
ASAM AE HIL

Application Programming Interface for ECU
Testing via Hardware-in-the-Loop Simulation

Part 1 of 4

Programmers Guide

Version 1.0.0

Base Standard

Association for Standardisation of
Automation and Measuring Systems

Dated:23.07.2009

© ASAM e.V.

2 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Status of Document

Date: 23.07.2009

Author: ASAM HIL workgroup

Version: Version 1.0.0

Doc-ID:

Status:

Type Base Standard

Copyright Notice
Although this document was created with the utmost care it cannot be guaranteed
that it is completely free of errors or inconsistencies.
ASAM e. V. makes no representations or warranties with respect to the contents or
use of this documentation, and specifically disclaims any expressed or implied
warranties of merchantability or fitness for any particular purpose. Neither ASAM
nor the author(s) therefore accept any liability for damages or other consequences
that arise from the use of this document.
ASAM e. V. reserves the right to revise this publication and to make changes to its
content, at any time, without obligation to notify any person or entity of such
revisions or changes.
Without explicit authorization by ASAM e. V. this document may neither be
changed nor in the original or a changed state be implemented / integrated in other
documents. This also applies for parts of this document. Printing, copying and
distributing of the document as a whole or in parts is explicitly permitted.

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

3

Revision History

This revision history shows only major modifications between release versions.

Date Author Filename Comments

4 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Table of contents

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

5

Table of contents

1 Motivation 9

1.1 What is Hardware-in-the-Loop Simulation ? 9

1.2 A Typical HIL Testbench 10

1.3 Standardization Potential in the HIL working Area 12

1.4 Today’s Situation 13

1.5 Goal of the HIL API Project 14

1.6 Technological Approach 15

2 Introduction 16

2.1 Abbreviations 16

2.2 Technical approach 17
2.2.1 Technology Independence 17
2.2.2 Object creation 17

3 Standardized Functionality of the HIL API 18

3.1 Overview 18

3.2 Initialization 19

3.3 Ports of the HIL API 20

4 Common functionalities 21

4.1 Versioning 23

4.2 ASAM Data Types 24

4.3 Collections 25

4.4 ValueContainer 28
4.4.1 Overview 28
4.4.2 General Value Container Classes 29
4.4.3 Application oriented Value Container Classes 30
4.4.4 Attributes 31
4.4.5 Link to Samples 32

4.5 Error Handling 33
4.5.1 Exception Classes 33
4.5.2 Error Codes 34

4.6 Document Handling 35

4.7 Signal Description 36
4.7.1 Signal File Reading and Writing 39
4.7.2 General Remarks about segment-based Signals 40
4.7.3 Signal Segments 42
4.7.4 Usage of Signal Description 63

4.8 Watcher 72
4.8.1 General 72

Table of contents

6 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.8.2 Usage In Capture 73

4.9 Data Capturing 74
4.9.1 General Approach 74
4.9.2 Capturing 74
4.9.3 Capture Result 76
4.9.4 Bookmark Handling 76
4.9.5 Document Handling for Capture data 80
4.9.6 State Diagram of Capturing 81
4.9.7 Usage of Capturing 82

5 Model Access Port 86

5.1 User concept 86
5.1.1 General 86
5.1.2 Model Access Port 86
5.1.3 Stimulus 87
5.1.4 Document Handling 88
5.1.5 State Diagram of Signal Generator 89

5.2 Usage of this port 91
5.2.1 Reading & Writing Model Variables 91
5.2.2 Stimulating Model Variables 93

6 Diagnostic Port 96

6.1 User concept 96
6.1.1 General 96
6.1.2 API 98

6.2 Usage of this port 101
6.2.1 Getting the ECU object 101
6.2.2 Reading and Clearing the Fault Memory 102
6.2.3 Reading the Variant Coding Data 103
6.2.4 Reading Identification Data 104
6.2.5 Reading Measurement Data 105
6.2.6 Executing Macros 106
6.2.7 Reading and Writing Values from and to the EEPROM by

Alias Names 108
6.2.8 Reading from the EEPROM 109
6.2.9 Writing to the EEPROM 109
6.2.10 Implicit and explicit communication 110
6.2.11 Sending HEX services with explicit communication 110
6.2.12 Executing Jobs 111
6.2.13 Reading Measurement Data from a Functional Group 112
6.2.14 Using the BaseController 113

6.3 Special hints 113
6.3.1 Structure of returned Collections 113
6.3.2 States in the Diagnostic Tool 114

7 EES Port 115

7.1 User concept 115
7.1.1 General 115
7.1.2 Configuration and Execution of Electrical Errors 117
7.1.3 Triggers in EES 119

Table of contents

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7

7.1.4 Electrical Errors 119
7.1.5 API 122
7.1.6 EES Port States 128

7.2 Usage of this port 129
7.2.1 Creating Error Configurations by API 129
7.2.2 Creating Error Objects 131
7.2.3 Loading Error Configurations from File 135

7.3 Special hints 136
7.3.1 EES hardware Limitations and Extensions 136

8 ECU Access 137

8.1 User concept 137

8.2 ECUCPort 139
8.2.1 States of the ECUCPort 139
8.2.2 Accessing ECU parameters 141
8.2.3 Getting the list of variables of the ECUCPort 143
8.2.4 Manage ECU memory pages 143

8.3 ECUMPort 146
8.3.1 States of the ECUMPort 146
8.3.2 Getting lists of variable and task names 148
8.3.3 Read a scalar variable value and its properties 148
8.3.4 Read an array variable value and its properties 149
8.3.5 Read a matrix variable value and its properties 150
8.3.6 Capturing ECU variables 152

Directory of Figures 155

Directory of Tables 159

Books 161

Table of contents

8 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Motivation

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

9

1 MOTIVATION

1.1 WHAT IS HARDWARE-IN-THE-LOOP SIMULATION ?

Figure 1 Principle of Hardware-in-the-Loop Simulation

Hardware-in-the-Loop (HIL) simulation has become a well-established verification
technology applied in many ECU development projects today.
By means of HIL technology function tests can be shifted to earlier development stages to
increase the maturity of new software and/or electronics components.
Cost and time expensive test drive cycles which have been performed in former times
directly in vehicle or on conventional test benches can be substituted by simulation based
operations.
Tests of failure situations or tests of dangerous maneuvers can be shifted into the
computer, at least in parts of the complete test program.
The major advantage is the capability to automate these test benches. This allows to
reproduce all test cycles and to operate these test benches 24 h per day.

A closed control loop of today‟s automotive electronic system as shown in the left part of
Figure 1 (Controller, output driver, actors, plant, e.g. an engine, sensors and the input side
signal conditioning) is substituted in parts. The electrical interfaces are retained. Sensors
and actors are either replaced by full simulated versions or they are even attached as
original physical load component in the test bench setup.
The plant part of the control loop, i. e. in this example the engine, is replaced completely
by a simulation model, which can be calculated in the appropriate model precision in real-
time.

Motivation

10 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

1.2 A TYPICAL HIL TESTBENCH

Figure 2 HIL Testbench Architecture

A typical HIL test bench consists of:

 Host software to interactively operate the different components connected to the
test bench.
Operation in this sense means configuration, status control, accessing data, … .
To be able to perform this operations also in an unattended, i.e. automated
manner also an appropriate test automation (TA) system is applied. These TA
systems consist of a set of components, such as: test executors, test frameworks
to manage the parameterization of test cases, specific graphical or tabular-based
test editors, comprehensive test libraries etc. More and more it becomes
inevitable to integrate these HIL host software tools into other engineering data
processing tools, e.g. for data storage, test management, requirement
management or bug tracking systems.

 Driver
The host software accesses the connected test bench components via specific
drivers. These drivers use very heterogeneous technologies, such as: RS232,
DLLs, (D)COM-Interfaces, TCP/IP or even GPIB. Up to now only very few of
these driver interfaces are standardized, e.g. [ASAM MCD-3] for calibration or
diagnostic access to ECUs.

Motivation

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

11

 Test bench components
First there is the real-time simulator itself. Here the simulation parts are
calculated in the required time accuracy. Via the input-/output cards resp. the
network interfaces (e.g. for CAN, LIN, Flexray) the real-time process is connected
on electrical level to the electronic control unit. Missing network components, e.g.
missing ECUs might be simulated here (so-called rest bus simulation).
A second very essential HIL test bench component is the so-called Failure
Injection Unit (FIU) or Electrical Error Simulation (EES) system. Test cases may
not only comprise checking the behavior of the System Under Tests (SUT) in a
fully functional environment. It is also important to check the SUT in case of
electrical errors on the input and output pins.
To be able to access ECU internal variables external calibration or diagnostics
systems need to be integrated into the test automation environment.

 System under Test: ECU(s)
The last and most important part of HIL test benches is of course the system
under test itself, i.e. the ECU or a complete network of ECUs. HIL technology is
applied today on the one hand for component testing of single ECUs but very
often also for integration testing of complete vehicle ECU networks.
As ECUs are very often developed in different variants the equipment of HIL test
benches is prepared to be adapted to these variants.

Motivation

12 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

1.3 STANDARDIZATION POTENTIAL IN THE HIL WORKING AREA

Figure 3 Standardization Potential around Hardware-in-the-Loop Simulation

Compared to other fields of activities in the area of Automotive Electronics (AE) the scope
of Hardware-in-the-Loop simulation had not been addressed very intensively in the past.

Existing AE standards, such as [ASAM MCD-2 MC], [ASAM MCD-2 NET] or [ASAM MCD-
3] are used naturally, but many other interfaces or sub-functionalities provide a huge
potential for standardization.

The configuration and results of simulation test benches might be stored in data storage
systems, which are comparable to other test bench areas. ASAM ODS might play a role
here in future.

The exchange of test descriptions and entire test libraries via a standardized XML format
would support many additional cases described. ASAM has just started another HIL
technology project (ASAM Automotive Test Exchange Format 1.0.0) to work on these
issues.

ASAM HIL API 1.0.0 addresses the standardization of the drivers of the most important
HIL test bench components.

Motivation

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

13

1.4 TODAY’S SITUATION

Figure 4 Today’s Situation in HIL Testsystems

HIL technology had been developed over the years by only a few suppliers. Due to
several reasons the architecture of these HIL systems was characterized by a direct rigid
coupling of test automation software and used test hardware.
Therefore test cases directly depend on the used test hardware.
The end users perspective is, that not always the „best‟ test software could be combined
with the „best‟ testing hardware.
Know-how could not be transferred from one test bench to the other. This resulted in
additional training costs for employees.
Switching to the newest testing technology was difficult because of tool specific formats
and test hardware compatibility issues.
This led to the consequence that the base pre-condition for an exchange of test cases,
e.g. between OEM and supplier, was not fulfilled.

Motivation

14 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

1.5 GOAL OF THE HIL API PROJECT

The major goal of all HIL technology standardization efforts is to allow for more reuse in
test cases and to decouple test automation software from test hardware.

ASAM HIL API 1.0.0 only addresses the issue of decoupling. Therefore the reuse of test
cases within the same test automation software on different test hardware systems should
be achieved. This will lead to a reduction of effort for test hardware integration into test
automation software.
Software investments and test case development efforts can be long-term protected. End
users may decide on test automation software system on a perspective of many years
without the coercion of being coupled to one test hardware supplier.

Figure 5 Solution Approach First Step: Standardisation of HIL API

Motivation

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

15

1.6 TECHNOLOGICAL APPROACH

Today‟s HIL test automation systems apply very different description technologies to
define the test cases, e. g. the script language Python, C# or Java.
Graphical or tabular based notations might also be used but underneath transform to the
mentioned languages.

ASAMs goal had always been to define technology independent standards. Following the
approach which has been used in the [ASAM MCD-3] project first the ASAM HIL API 1.0.0
project team decided to develop the API as a generic UML-2 model, the so-called HIL API
reference model.

Rules for the derivation of the market relevant Programming Language Versions for
Python, C# and Java have been described and the so-called Technology References for
these languages are equal work products of the standard.

The separation of UML based reference model also allows adding other technologies later
without the need to modify the API model itself.

Figure 6 Technological Approach via a generic HIL API Model

Introduction

16 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

2 INTRODUCTION

2.1 ABBREVIATIONS

(D)COM (Distributed) Component Object Model

AE Automotive Electronics

API Application Programming Interface

ASAM Association for Standardisation of Automation and Measuring
Systems

CAN Controller Area Network

DLL Dynamic Link Library

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

EEPROM Electrically Erasable Programmable Read Only Memory

EES Electrical Error Simulation

ERD Entity Relationship Diagram

FIU Failure Injection Unit (see EES)

GPIB General Purpose Interface Bus

HIL Hardware In the Loop

HW Hardware

LIN Local Interconnect Network

PC Personal Computer

RS232 Recommended Standard 232 (standard for serial binary data
signals)

SEQ Sequence Diagram

SUT System Under Test

SW Software

TA Test Automation

TCP/IP Transmission Control Protocol/Internet Protocol

UML2 Unified Modeling Language Version 2

XML Extensible Markup Language

Introduction

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

17

2.2 TECHNICAL APPROACH

2.2.1 TECHNOLOGY INDEPENDENCE

The object model of the HIL API is defined in UML. This UML model is mapped to different
programming languages. As a result of the mapping process, all HIL API classes are
available in each of the supported programming languages either as interface definitions
or using native data types. A mapping guideline is available for each programming
language which describes how the UML model is converted to the programming
language.

Interface definitions are available for the following programming languages:

 C# [HIL C# Reference]

 Python [HIL Python Reference]

 Java [HIL Java Reference].

2.2.2 OBJECT CREATION

All instances of the HIL API classes are created either by a constructor or by an object
factory.
If a constructor is used (which may have arguments), it is explicitly modeled in the UML
model. These constructors always have the same name as the class; also if more than
one constructor is defined (constructor overloading).
Classes which have no constructor must be created via an object factory. In that case,
typically a method is available which returns an instance of the class (e.g. the
CreateCapture method of the MAPort returns a new Capture instance).

Destructors are only modeled if they are explicitly needed to destroy the object.

Standardized Functionality of the HIL API

18 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

3 STANDARDIZED FUNCTIONALITY OF THE HIL API

3.1 OVERVIEW

Hil API provides manufacturer independent access to the functionalities of a HIL
simulator. It consists of interface definitions. Each tool vendor can provide an
implementation of these interfaces which is specific for his tool set. Thus, the user of the
HIL API gains standardized access to the tools of different vendors.

The HIL API covers the functional areas

 Model access,

 ECU access,

 Diagnostics access, and

 Electrical error simulation.

Each of these functional areas is represented by one or several ports. As the initialization
of the tools is not part of the HIL API, the initialization of the HIL system has to be done by
the vender-specific functions.

Standardized Functionality of the HIL API

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

19

3.2 INITIALIZATION

A typical proceeding for using the HIL API for the access to a HIL simulator is depicted in
Figure 7:

1. The HIL simulator is configured and started by using the vendor-specific functions.
2. Using the vendor-specific implementation of the HIL API, a port instance is

created.
3. After this, the standardized HIL API functions are used to access the simulator.

HIL Simulator

Configure Simulator

StartSimulator

myDiagPort = new VendorX.DiagPort()

myVal = myDiagPort.Read (....)

T
e
s

t
C

a
s

e
P

e
rs

o
n

a
l

F
ra

m
e

w
o

rk

M
a

n
u

a
ll

y
 o

r
P

e
rs

o
n

a
l

F
ra

m
e

w
o

rk

P
ro

p
ri

e
ta

ry
 T

e
s

t
A

u
to

m
a

ti
o

n

Im
p

le
m

e
n

ta
ti

o
n

 f
ro

m

V
e
n

d
o

rX

H
IL

 A
P

I

....

....

Figure 7 Getting Access to HIL API

Standardized Functionality of the HIL API

20 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

3.3 PORTS OF THE HIL API

All ports of the HIL API are derived from a common base interface Port. Figure 8 shows
all ports, defined in this standard.

class HIL Ports

Port

MAPort::MAPort ECUPort::ECUMPort

ECUPort::ECUCPort

DiagPort::DiagPort

EESPort::EESPort

Figure 8 Ports in HIL

Table 1 gives an overview of these ports.

Table 1 Ports

Port description

MAPort The Model Access port provides access to the simulation model. It is
possible to read and to write parameters and to capture and to generate
signals.

DiagPort The Diagnostic port communicates with a diagnostic system to read data
via diagnostic services from an ECU or Functional Group.

EESPort The EES port controls electrical error simulation hardware. It allows
setting different types of errors.

ECUPort The ECU ports communicate with an MC system and thus provide
access to ECU internal values. The ECU M port allows to capture and to
read measurement variables. The ECU C port is used for calibration.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

21

4 COMMON FUNCTIONALITIES

This chapter describes functionalities of HIL API which are not specific for one port.

Figure 9 Packages in Common part

This Figure 9 shows all top level packages and the sub packages of the package
Common of the HILAPI UML model. The most important parts of the package Common
are described in the following sections.

Common functionalities

22 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Table 2 Packages of Common part

Sub package name Description

ASAMTypes Contains all basic data types which are used in the UML model,
e.g. Boolean, string or int.

CaptureResult Contains classes which handle the result of Capturings.

Capturing Contains classes which do Capturing.

Collections Contains all collection classes used in the model.

DocumentHandling Gives an overview of all classes which are used to read or write
content from/to the file system in different file formats.

Error Contains common classes used for error handling. Error codes
are defined in the sub package Enum.

Port Gives an overview of all available ports and defines the base
class for all ports.

Signal, Symbol Contain classes for describing signal waveforms. Such signals
are used for signal generation.

ValueContainer A set of classes which are designed to store values of different
types, e.g. scalar, matrix or map values. Together with the
ASAMTypes and the Collection classes, the value container
classes are the fundamental type system which is used in the
entire UML model.

WatcherHandling Classes being used by the capturing classes for defining trigger
conditions.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

23

4.1 VERSIONING

Versioning of the HILAPI is done using three numbers: major version, minor version and
revision number. The major number is the actual version, the minor number the actual
maintenance of the version. The revision number is the revision of the maintenance.
These numbers define the interface version of the HIL API.

In addition, a build number allows a tool manufacturer to clearly version his HIL API
implementation, independently from the HIL API version. It is of type string in order to
provide more flexibility.

The version information can be retrieved using the HILAPI class. The standard
implementation of the HILAPI class returns the following version numbers:

Table 3 Version number

Number Value

Major version 1

Minor version 0

Revision number 0

Build number empty

Tool manufacturers must override the base implementation and return a valid build
identifier.

Common functionalities

24 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.2 ASAM DATA TYPES

ASAM data types are used in the entire UML model. These define the type system for all
scalar basic data types. All complex data types use these base types (see e.g. package
Common/ ValueContainer at chapter 4.4). More information about the ASAM data types is
available in [ASAM Data Types].

The following basic data types are used in the HIL API UML model:

 A_ASCIISTRING

 A_BOOLEAN

 A_BYTEFIELD

 A_FLOAT64

 A_INT64

 A_UINT64
 A_UNICODE2STRING

The ASAM data types are included in the model in the sub package ASAMTypes:

Figure 10 ASAM data types

When the UML model is transformed to different programming languages (e.g. Python,
C#, Java), the ASAM data types are mapped to native, language specific data types.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

25

4.3 COLLECTIONS

A lot of HIL API classes need collections like arrays, lists and dictionaries. The sub
package Collections defines all collection classes used in the HIL API. All collection
classes are derived from the base class Collection.

Figure 11 gives an overview of the collection classes.

Figure 11 Collection classes

Collection is the base class for all collection classes. It provides functions to get the
number of elements in the collection and to access all elements using an enumerator.

Enumerator: Enumerators allow iterating over all elements of a collection. They provide a
next() method to move to the next element in the collection. Enumerators become
invalid if the underlying collection has been modified, e.g. because an element has been
added or removed.

The following collection classes are meant to be understood as a set of pattern classes.
They represent different types of collection, e.g. index based collections or dictionaries.
They are not used directly in the UML model. Instead, the concretely typed versions of
these classes are used. These pattern classes are:

 ConventionIndexedCollection represents a collection with a fixed order of
elements. Consequently, calling the GetByIndex() method several times using
the same index yields the same element.

Common functionalities

26 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

 ConventionNamedCollection: The NamedCollection class is the template for all
dictionaries used in the HIL API whose key is a string name. A method
Contains() is available which allows to check if the NamedCollection
contains an element with the given name.

 ConventionValueCollection is the template for all dictionaries used in the HIL API
whose key is an integer number.

In order to avoid multiple inheritances, the template collection classes are modeled using
a „Realize“-association (see UML-2). The methods are defined in the base classes of the
collections, but the implementation of a derived collection type explicitly contains all
methods of the collection class that it realizes. Figure 12 shows this using the
SegmentSignalDescription class. The getCount() and GetEnumerator()
methods are modeled in the collection base calls and in the
SegmentSignalDescription class as well.

Figure 12 Collection example: SegmentSignalDescription

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

27

Besides the base and pattern classes there are collection classes which are concrete
realizations of the above described patterns. A StringNamedCollection maps a
string name to string value, a UintNamedCollection maps string name to an
unsigned integer value and a FloatNamedCollection a string name to a float value.
The AnyObjectNamedCollection maps string names to any kind of object, e.g. to
an HIL API object or to a native data type. Figure 13 illustrates this.

Figure 13 Typed Collections

Common functionalities

28 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.4 VALUECONTAINER

4.4.1 OVERVIEW

The ValueContainer package provides a set of container classes, which are used to store
data values. These container classes are divided into three categories:

1. The first category comprises all general container classes which are either scalars
or which contain elements being accessed by integer based indices, e.g. vectors
and matrices. Concrete sub classes are available for the most important data
types like Boolean, integer, float and string. Some examples are
ScalarFloatValue, StringVectorValue and BooleanMatrixValue.

2. In addition, there are more application oriented classes, which are used for
calibration access, for capturing or for signal generation. Examples are the classes
CurveValue, MapValue and SignalGroupValue.

3. The third category consists of named collections. These are explained in more
detail in section 4.3.

All container classes are derived from a common base class named BaseValue. Its
method getType() allows to retrieve the concrete data type of a value container
instance as specified by the enumeration type DataTypes.

It is possible to attach meta information to a value container instance. Examples for such
meta information are the name of the variable or the unit of the value. More detailed
information about meta data can be found in chapter 4.4.4.

The getValue methods return copies (not references) of the internal data objects, e.g. a
new instance of VectorValue is returned when using the XVector property on a
MapValue object. So the value itself cannot be changed by altering the returned
instances.

In the following chapters explain the different value container categories and the concept
of meta data information in more detail.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

29

4.4.2 GENERAL VALUE CONTAINER CLASSES

General ValueContainer classes represent scalar, vector and matrix values (Figure
14).

class _doc_General Value classes

BaseValue

{abstract }

+ getAttributes() : Attributes

+ setAttributes(Attributes)

+ getType() : DataType

ScalarValue

{abstract }

VectorValue

{abstract }

+ getCount() : A_INT64 {abstract }

MatrixValue

{abstract }

+ getColumnCount() : A_INT64

+ getRowCount() : A_INT64

1

Values

1.. *

Figure 14 General Value classes

All elements inside a composite ValueContainer class (e.g. VectorValue or
MatrixValue) are homogenous, meaning all elements must be of the same type,
which is specified by the class. Class names are prefixed with Int, Uint, Float, String and
Boolean corresponding to type of the managed elements (Figure 15).

Common functionalities

30 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

class _doc_Data types of v alue elements managed by Value class...

ScalarValue

{abstract }

VectorValue

{abstract }

BooleanValue

StringValue

IntValue

UintValue

FloatValue

BooleanVectorValue

StringVectorValue

IntVectorValue

UintVectorValue

FloatVectorValue

BaseValue

{abstract }

Figure 15 Data types of value elements managed by Value classes ScalarValue and
VectorValue

The ScalarValue classes IntValue, FloatValue, StringValue and
BooleanValue represent a single value of the particular data type.

The VectorValue classes IntVectorValue, FloatVectorValue,
StringVectorValue and BooleanVectorValue represent an ordered sequence
of values. The Count property returns the number of values in the collection.

The MatrixValue classes IntMatrixValue, FloatMatrixValue,
StringMatrixValue and BooleanMatrixValue represent a two dimensional
array of values. The ColumnCount and RowCount properties return the number of
values of each dimension inside the matrix.

4.4.3 APPLICATION ORIENTED VALUE CONTAINER CLASSES

Application oriented ValueContainer classes (Figure 16) are used for more
specialized applications like calibration and capturing.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

31

MapValue and CurveValue classes are widely used for calibration of curve (1D table)
and map (2D table) values. Their X and Y vectors must be either monotonously increasing
or decreasing and the number of rows / columns of the function values must be equal to
the length of the Y / X vector.

SignalValue and SignalGroupValue are used to represent captured signal data.

class _doc_Application oriented Value classes

BaseValue

{abstract }

XYValue

Curv eValue SignalValue

SignalGroupValueMapValue

Figure 16 Application oriented Value classes

4.4.4 ATTRIBUTES

Instances of the Attributes class are used to attach meta data to
ValueContainer objects. The information consists of a list of attribute names their
values. The name and the value of an attribute are strings (A_UNICODE2STRING).

class _doc_Attributes class

Attributes

+ Attributes()

+ getDescription() : A_UNICODE2STRING

+ setDescription(description :A_UNICODE2STRING)

+ getName() : A_UNICODE2SRING

+ setName(name :A_UNICODE2STRING)

+ getUnit() : A_UNICODE2STRING

+ setUnit(unit :A_UNICODE2STRING)

+ GetProperty(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ SetProperty(name :A_UNICODE2STRING, value :A_UNICODE2STRING)

BaseValue

{abstract }

+ getAttributes() : Attributes

+ setAttributes(attributes :Attributes)

+ getType() : DataType

0..1

Figure 17 Attributes class

Common functionalities

32 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Some commonly used attributes are predefined. These are:

 Name

 Description

 Unit

It is also possible to add user-defined attributes using the methods SetProperty()
and GetProperty().

4.4.5 LINK TO SAMPLES

The sample code for this chapter will be found at

C# C#\SampleCode\Common\ValueContainer\ValueContainerExample.cs
Python Python\SampleCode\Common\ValueContainerExample.py
Java JAVA\SampleCode\Common\ValueContainer\ValueContainerExample.java

Technology_Reference_Interfaces/C%23/SampleCode/Common/ValueContainer/ValueContainerExample.cs
Technology_Reference_Interfaces/Python/SampleCode/Common/ValueContainerExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/Common/ValueContainer/ValueContainerExample.java

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

33

4.5 ERROR HANDLING

4.5.1 EXCEPTION CLASSES

Figure 18 Exceptions

Errors are handled using exceptions. HILAPIException is the base class for all HIL
API specific exception types. HILAPIException is mapped to the language native
exception mechanism (e.g. in C#, HILAPIException is derived from
System.Exception).
Application oriented exception classes are derived from HILAPIException, e.g.
MAPortException, DiagPortException (see Figure 18). These are defined in a
separate sub-package named Error and named <portname>Exception, e.g.
MAPortException.

Common functionalities

34 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Figure 19 Package structure

4.5.2 ERROR CODES

Enum Error Codes

Error codes are used to uniquely identify each type of error which occurs. For each
exception class a range of error codes is defined.

The enumeration “ErrorCodes” in the sub package Common/Enum contains all available
error codes. Each error code is defined by a unique unsigned error number and a unique
name. The following ranges of error codes are available:

Table 4 ErrorCode PreFixes and ErrorValue Range

PreFix of ErrorCode Range of ErrorValue

eCOMMON _ 1000 - 1999

eDIAG_ 2000 - 2999

eEES _ 3000 - 3999

eMA _ 4000 - 4999

eECU _ 5000 - 5999

eNW_ (reserved for further version) 6000 - 6999

eFW_ (reserved for further version) 7000 - 7999

The complete list of error codes along with their descriptions and messages can be found
in the file ASAM_AE_HIL_BS_ErrorOverview_V1-0-0.xls (part of the version 1.0.0
deliverables).

ASAM_AE_HIL_BS_ErrorOverview_V1-0-0.xls

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

35

4.6 DOCUMENT HANDLING

The classes derived from the abstract class DocumentManager are designed to save
and load data to/from files. Each class derived from the DocumentManager provides a
Load() and a Save() function to store data in a particular file format. E.g. sub classes
are defined for reading and writing signal descriptions, signal generator properties,
capture results, and EES Port configurations.

class _doc_DocumentHandling

DocumentManager

{abstract }

Capturing::CaptureResultWriter

{abstract }

Capturing::CaptureResultMDF40Writer

Capturing::CaptureResultReader

{abstract }

Stimulus::SignalGeneratorReader

{abstract }

Stimulus::SignalGeneratorWriter

{abstract }

Capturing::CaptureResultMDF40Reader

Stimulus::SignalGeneratorSTIReader

Stimulus::SignalGeneratorSTIW riter

Signal::SignalDescriptionsReader

{abstract }

Signal::SignalDescriptionsWriter

{abstract } Signal::SignalDescriptionsSTIW riter

Signal::SignalDescriptionsSTIReader

Capturing::CaptureResultMemoryWriter

EESPort::EESConfigurationWriter

{abstract }

EESPort::EESConfigurationReader

{abstract }

EESPort::EESConfigurationFileW riter

EESPort::EESConfigurationFileReade r

Figure 20 DocumentHandling in HIL

Common functionalities

36 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.7 SIGNAL DESCRIPTION

When testing ECUs via HIL simulation, signals play an important role in different use
cases. In many test cases, model variables are stimulated. In other tests, variables are
captured and the captured data has to be compared with reference signals. For these use
cases, the HIL API introduced the classes SignalDescription,
SignalDescriptionSet and SignalGenerator, as shown in Figure 21.

mySignalGenerator

mySignalDescription_1 „Model\Engine \channelVar1“

mySignalDescriptionSet

mySignalDescription_1
20.0s 10.0s

mySignalDescription_2
30.0s

mySignalDescription_2 „Model\Engine \channelVar2“

Figure 21 SignalDescriptions and SignalGenerator

A signal description consists of one or multiple segments, e.g. a ramp, followed by sine,
which is denoted as "mySignalDescription_1" in the figure, or simply a constant signal
denoted as "mySignalDescription_2". Many other segment types are also defined by the
HIL API (see below). Such a signal description does not have any relation to variables of
the simulation model. It can be used e.g. as a reference signal. Multiple signals are
aggregated in a signal description set.

In order to use signals for stimulation, a signal generator is used. A signal generator
relates signals to model variables and controls the signal generation process.

When modeling signals, an advanced specification is possible: Figure 22 shows a ramp
signal, denoted as "modulateSignal" and a sine signal ("mySignalDescription_1") whose
amplitude is specified by the ramp. The resulting signal is depicted besides the signal
generator. All parameters of all segment types can be specified by other signals.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

37

mySignalGenerator

mySignalDescription_1 „Model\Dummy \Mod“

mySignalDescriptionSet

modulateSignal

mySignalDescription_1

5.0s

5.0s

Figure 22 Modulate Signal Parameter by further Signals

Another possibility to describe signals are operational signal descriptions: An operational
signal adds or multiplies two signals, as shown in Figure 23.

mySignalDescriptionSet

mySignalDescription _1
20.0s 10.0s

mySignalDescription _2
30.0s

operationSignalDescription

Operation = Add

mySignalGenerator

operationSignalDescription „Model\Dummy \Mod“

Figure 23 SignalDescriptions and SignalGenerator

In order to compare a signal description for example with sample data, i.e. signals that are
defined by a couple of points in time and corresponding functional values, it is helpful to
transform the signal description into an equivalent format (see Figure 24). Calling the
method CreateSignalValue() on a signal description with the sample time as
parameter, creates an according signal value (see Chapter 4.4). Calling method
CreateSignalGroupValue() on SignalDescriptionSet creates a signal
group value.

Common functionalities

38 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

mySignalDescriptionSet

mySignalDescription _1
20.0s 10.0s

mySignalDescription _2
30.0s

CreateSignalValue(0.1)

CreateSignalGroupValue(0.1)

X

[

0;

0.1;

0.2;
0.3;

...

]

Y

[

0;

0.15;

0.30;
0.45;

...

]

myChannel_1

SignalValue

myChannel_2

X

[

0;

0.1;

0.2;
0.3;

...

]

Y

[

0;

0.15;

0.30;
0.45;

...

]

myChannel_1

SignalGroupValue

Y

[

2;

2;

2;
2;

...

]

Figure 24 SignalDescriptions and SignalGenerator (data transformation)

In general the signal description is used to describe a signal for general purpose usage. A
signal can be described by using synthetic waveform elements like ramp or sine and/or
with elements which contain the signal points in form of numerical data.
The entry point is the class SignalDescriptionSet which acts as a container for
signals to group several signals to one signal-set.
The SignalDescription is the abstract base class of
OperationSignalDescription and SegmentSignalDescription.
The class OperationSignalDescription adds or multiplies (depends on operation
property) 2 signals (left and right signal). The limitation of these 2 signals was explicitly
done for version 1.0.0 of HIL. The schema of Stimulus already allows 0..n operands.
The SegmentSignalDescription is used to define a signal waveform based on a
temporal sequence of different segments. Thus the SegmentSignalDescription is
an indexed collection of signal-segments.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

39

Figure 25 SignalDescription relations

4.7.1 SIGNAL FILE READING AND WRITING

To save the whole content of a SignalDescriptionSet or to load a complete set of
signals into a SignalDescriptionSet there are two classes: The
SignalDescriptionWriter and the SignalDescriptionReader. This
concept allows it to load and save data in different formats. One format is already
standardized in HILAPI 1.0.0, the STI-Format (see SignalDescriptionFormat.xsd).

class DocumentHandling

DocumentHandling::DocumentManager

{abstract }

Signal::SignalDescriptionsReader

{abstract }

Signal::SignalDescriptionsSTIReader

Signal::SignalDescriptionsWriter

{abstract }

Signal::SignalDescriptionsSTIW riter

Signal::SignalDescriptionSe t

10..*

Figure 26 SignalDescription Reader and Writer

Common functionalities

40 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.7.2 GENERAL REMARKS ABOUT SEGMENT-BASED SIGNALS

A segment is the smallest unit that describes the signal form completely for a defined time
period. Properties of a segment are:

Type: Each segment has a read-only property type that indicates the kind of the segment
for post-analysis (SignalSegment.getType(): SegmentTypes).

Comment: Each segment has an optional property comment that can be used by the
tester to write a description linked to the segment definition, for example to help to
understand the complete signal definition.

Duration: Most of the segments have the property duration that specifies the length in
time. The unit of duration is second. The SignalValueSegment and the
OperationSegment have no duration property.

The other segment parameters/properties are segment specific. For example the
SineSegment has the parameters amplitude, offset, period and phase.
All segment parameters use the Symbolic Mapping. That means the parameters accept a
numeric value (ConstSymbol) or another channel (SignalSymbol) that is used to
modulate a segment parameter. An example for this is the amplitude modulation of a
SineSegment. It is not possible to modulate the duration of the segment by another
signal, thus the duration property only accepts the ConstSymbol.

class Symbol

Symbol::Symbol

{abstract }

Symbol::ConstSymbol Symbol::StringSymbol Signal::SignalSymbol

Figure 27 Symbol

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

41

Additionally segments can be combined together by operations. So you can for example
add a ramp signal to a noise signal. This operation on can be done by the
OperationSegment that can be used in the same way as the native segments.

List of segments:

Synthetic Waveform Segments:

 ConstSegment

 RampSegment

 IdleSegment

 NoiseSegment

 SlopeRampSegment

 SineSegment

 SawSegment

 PulseSegment

 ExpSegment

Data Oriented Segments:

 SignalValueSegment

Complex Segments:

 OperationSegment

Common functionalities

42 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.7.3 SIGNAL SEGMENTS

4.7.3.1 CONSTSEGMENT

The ConstSegment is used to generate a part (segment) of the signal with a constant
signal flow. The amplitude of the signal is on a constant value during the whole duration of
the segment.

Mathematical description

Atf)(

A : Amplitude of the signal

HILAPI – Description

Figure 28 ConstSegment

Value = 2.5

Duration = 3.0

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

43

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX(A_FLOAT64)]

Value: Value which is used as signal amplitude.
 Unit: -
 Range: [MIN(A_FLOAT64) <= Value <= MAX(A_FLOAT64)]

Common functionalities

44 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.7.3.2 RAMPSEGMENT

The RampSegment is used to generate a part (segment) of the signal with a ramp-
shaped signal flow. The amplitude of the signal follows a straight line according to a linear
equation.
The slope of the line is calculated from the given start- and stop-amplitude of the ramp

and the duration of the segment (y/ x).

Mathematical description

1
12)(yt

T

yy
tf

D

1y : Start amplitude

2y : Stop amplitude

DT : Duration

HILAPI-Description

Figure 29 RampSegment

Start = 2.0

Stop = 3.5

Duration =
3.0

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

45

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX(A_FLOAT64)]

Start: Start value of the amplitude
 Unit: -
 Range: [MIN(A_FLOAT64) <= Start <= MAX(A_FLOAT64)]

Stop: Stop value of the amplitude
 Unit: -
 Range: [MIN(A_FLOAT64) <= Stop <= MAX(A_FLOAT64)]

Common functionalities

46 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.7.3.3 IDLESEGMENT

The IdleSegment sets the signal generation into idle-mode for the given duration.
During this idle time the signal generator will not write to the corresponding model
variable, respectively the memory location of the model variable.
The IdleSegment is normally used to allow other parts of the model to write to the
variable (eg. model-i/o or user interaction).
If the variable was not written during the idle time by some other parts of the model, the
variable is left untouched and will keep its value.

Mathematical description

-

HILAPI-Description

Figure 30 IdleSegment

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX(A_FLOAT64)]

Duration =
1.0

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

47

4.7.3.4 NOISESEGMENT

The NoiseSegment is used to generate a part (segment) of the signal with gaussian
noise. That means that the amplitude of the signal is gaussian distributed.
In each model step one noise value is calculated by using a random generator. The
generated random value is than applied against the gaussian distribution to get amplitude
values according to the gaussian bell-shaped curve.

Mathematical description

Gaussian Distribution:

2

2

2

)(

22

1
)(

x

exf

Box-Muller-Method:

From two standard independent random numbers u1 and u2 in the range 0..1 (e.g.

generated via random()) two standard normal-distributed and independent random

numbers z1 and z2 will be created.

ii zx

uuz

uuz

With

)2sin()1ln(2

and

)2cos()1ln(2

212

211

It is possible to generate normal distributed random numbers xi with any mean and sigma
parameters you need.

: Mean value

: Standard deviation

Note: The Box-Muller-Method is used by the Python function random.gauss(mu, sigma).

Common functionalities

48 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HILAPI-Description

Figure 31 NoiseSegment

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX (A_FLOAT64)]

Mean: Mean value, where the Gaussian distribution is moving
 Unit: -
 Range: [MIN (A_FLOAT64) <= Mean <= MAX (A_FLOAT64)]

Sigma: Standard deviation of the signal amplitude against the mean value
 Unit: -
 Range: [MIN (A_FLOAT64) <= Sigma <= MAX (A_FLOAT64)]

Seed: Start value of the random generator
 Unit: -
 Range: [-2147483646 <= Seed <= +2147483645]

Mean = 3.0

Duration=3.0

Sigma = 1.0

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

49

4.7.3.5 RAMPSLOPESEGMENT

The RampSlopeSegment is used to generate a part (segment) of the signal with a
ramp-shaped signal flow. The amplitude of the signal follows a straight line according to a
linear equation.
The segment form is similar to RampSegment. Only the parameters are different.

Mathematical description

btmtf)(

m : Slope of the line

b : Offset of the line

HILAPI-Description

Figure 32 RampSlopeSegment

Offset = 2.0

Slope = 0.5

Duration = 3.0

Common functionalities

50 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset: Offset of the ramp
 Unit: -
 Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Slope: Slope of the ramp
 Unit: -
 Range: [MIN (A_FLOAT64) <= Slope <= MAX (A_FLOAT64)]

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

51

4.7.3.6 SINESEGMENT

The SineSegment is used to generate a part (segment) of the signal with a sine-shaped
signal flow. The amplitude of the signal follows a periodical sine-waveform.

Mathematical description

bt
T

Atf)
2

sin()(

A : Amplitude of the Signal

T : Cycle time
: Initial phase shift

b : Offset of the Signal

HILAPI-Description

Figure 33 SineSegment

Phase=0.5

Offset=1.0

Duration = 3.0

Amplitude=1.0

Period=1.0

Common functionalities

52 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset: Offset of the sine waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Period: Cycle time of the sine waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Period <= MAX (A_FLOAT64)]

Amplitude: Amplitude of the sine waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)]

Phase: Initial phase shift as positive or negative factor of the cycle time
 Unit: -
 Range: [-1.0 <= Phase <= +1.0]
 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

53

4.7.3.7 SAWSEGMENT

The SawSegment is used to generate a part (segment) of the signal with a saw tooth
shaped or triangle shaped signal flow. The amplitude of the signal follows a periodical saw
tooth waveform.

Mathematical description

0,0,,,

0

)(ff

f

f

tttTtTt

tttbt
t

A

ttbt
t

A

tf rrr

r

r

r

A : Amplitude of the Signal

T : Cycle time

: Duty cycle (ratio of rise-time to cycle-time)

rt : Rise time

ft : Fall time

: Initial phase shift

b : Offset of the Signal

HILAPI-Description

Figure 34 SawSegment

Offset = 1.0
Period = 1.0

Amplitude = 2.0

Duration = 3.0

DutyCycle=0.2
5

Phase=0.2
5

Common functionalities

54 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset: Offset of the saw tooth waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Period: Cycle time of the saw tooth waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Period <= MAX (A_FLOAT64)]

Amplitude: Amplitude of the saw tooth waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)]

Phase: Initial phase shift as positive or negative factor of the cycle time
 Unit: -
 Range: [-1.0 <= Phase <= +1.0]
 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift)

DutyCycle Ratio of raise-time to cycle-time as a positive factor
 Unit: -
 Range: [0.0 <= DutyCycle <= 1.0]
 (use 0.5 to get a triangular shaped signal)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

55

4.7.3.8 PULSESEGMENT

The PulseSegment is used to generate a part (segment) of the signal with a
rectangular-shaped signal flow. The amplitude of the signal follows a periodical rectangle-
waveform.

Mathematical description

Tt
Tttb

ttbA
tf h

h

h

,
0

)(

A : Amplitude of the Signal

T : Cycle time
ht : High-time

b : Offset of the Signal

HILAPI-Description

Figure 35 PulseSegment

Offset = 1.0

Amplitude=3.0

Period=1.0

Duty=0.75

Duration = 3.0

Phase=0.25

Common functionalities

56 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX (A_FLOAT64)]

Offset: Offset of the rectangle waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Offset <= MAX (A_FLOAT64)]

Period: Cycle time of the rectangle waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Period <= MAX (A_FLOAT64)]

Amplitude: Amplitude of the rectangle waveform
 Unit: -
 Range: [MIN (A_FLOAT64) <= Amplitude <= MAX (A_FLOAT64)]

Phase: Initial phase shift as positive or negative factor of the cycle time
 Unit: -
 Range: [-1.0 <= Phase <= +1.0]
 (0.25 is equal to 90° phase shift, -0.33 is equal to -120° phase shift)

DutyCycle: Ratio of high-time to cycle-time as a positive factor
Unit: -
Range: [0.0 <= DutyCycle <= 1.0]
(use 0.5 to get a symmetric rectangular shaped signal, use 1.0 to get a
constant value)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

57

4.7.3.9 EXPSEGMENT

The ExpSegment is used to generate a part (segment) of the signal with an exponential-
shaped signal flow. The amplitude of the signal follows an exponential curve.

Mathematical description

beAtf

t

)1()(

A : Amplitude of the Signal
: Time constant (tau)

b : Offset of the Signal

HILAPI-Description

Figure 36 ExpSegment

Duration = 2.0

Stop = 4.0

Start=2.0

Tau=0.2
5

Common functionalities

58 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

Duration: Duration / run time of the segment
 Unit: Seconds [s]
 Range: [0 < Duration <= MAX (A_FLOAT64)]

Start: Start amplitude (Offset of the Signal)
 Unit: -
 Range: [MIN (A_FLOAT64) <= Start <= MAX (A_FLOAT64)]

Stop: Stop amplitude
 (Note: Amplitude of the Signal A = Stop – Start)
 Unit: -
 Range: [MIN (A_FLOAT64) <= Stop <= MAX (A_FLOAT64)]

Tau: Time constant of the e-curve
 Unit: Seconds [s]
 Range: [MIN (A_FLOAT64) <= Tau <= MAX (A_FLOAT64)]

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

59

4.7.3.10 SIGNALVALUESEGMENT

The SignalValueSegment is used to generate a part (segment) of the signal which
directly uses numerical data. The amplitude of the signal follows directly the given data-
points.
Normally this segment is used to replay measured data.
The numerical (respective measured) data is stored in a SignalValue object (see
chapter 4.4) which is given during creation of the segment or during configuration of the
segment. The duration of the segment is derived from the time vector.
The serialization of the numerical data (e.g. SignalDescriptionSet.Save()) is
done by generating a flat MAT-File with two vectors of type double. The first vector
describes the time vector, and the second vector describes the corresponding signal
amplitude values.
The duration of the segment is implicitly derived from the time vector.

Mathematical description

][)(tNtf

N : Array with numerical data

HILAPI-Description

Figure 37 SignalValueSegment

Length of the data

Common functionalities

60 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

SignalValue: SignalValue object which contains the time-vector and the data-vector
 Unit: time-vector: Seconds [s], data-vector: -
 Range: [MIN (A_FLOAT64) <= time, data <= MAX (A_FLOAT64)]

Interpolation: Interpolation method
 Unit: -
 Range: enum InterpolationTypes

 eFORWARD: Next data point will be used immediately
(staircase forward)

 eBACKWARD: Actual data point will be used until next data
point (staircase backward)

 eLINEAR: Linear interpolation

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

61

4.7.3.11 OPERATIONSEGMENT (OPERATIONTYPES)

The OperationSegment is used to generate a part (segment) of the signal which is a
combination of two other segments. The two segments are combined by a mathematical
operation like addition or multiplication. The amplitude of the signal follows the calculated
result. The duration of the resulting segment is derived from the shorter segment.

Mathematical description

operationoptSoptStf ,)()()(21

1S : First segment / first operand

2S : Second segment / second operand

HILAPI-Description

Figure 38 OperationSegment

Duration = 3.0

LeftSegment

RightSegment

Operation = Add

Common functionalities

62 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Parameters:

leftSegment: left segment object (left operand s1)
 Unit: -
 Range: -

rightSegment:right segment object (right operand s2)
 Unit: -
 Range: -

Operation: Operation which is used to calculate the corresponding signal
 Unit: -
 Range: enum OperationTypes
 eADD: Addition (y(t) = s1(t) + s2(t))
 eMULT: Multiplication (y(t) = s1(t) * s2(t))

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

63

4.7.4 USAGE OF SIGNAL DESCRIPTION

The sample code for this example will be found at

C# C#\SampleCode\Common\Signal\SignalExample.cs
Python Python\SampleCode\Common\Signal\SignalExample.py
Java JAVA\SampleCode\Common\Signal\SignalExample.java

4.7.4.1 USING DIFFERENT SEGMENTS

Each SegmentSignalDescription consists of one or more segments. The
following sequence diagrams (Figure 39, Figure 40 and Figure 41) show the creation of all
signal types.

1. ConstSegment
2. RampSegment
3. RampSlopeSegment
4. SineSegment
5. SawSegment
6. PulseSegment
7. ExpSegment
8. IdleSegment
9. Operationsegment
10. SignalValueSegment

After creating instances of the segments, these instances are added to the
SegmentSignalDescription object.

Technology_Reference_Interfaces/C%23/SampleCode/Common/Signal/SignalExample.cs
Technology_Reference_Interfaces/Python/SampleCode/Common/Signal/SignalExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/Common/Signal/SignalExample.java

Common functionalities

64 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HIL User

:SegmentSignal
Description

SegmentSignalDescription()

setName (value)

setDuration (duration)

create a signal
consisting of
multiple different
segments

:ConstSegment
ConstSegment()

:RampSegment
RampSegment()

setValue (value)

Add (segment)

setDuration (duration)

setStart (value)

setStop (value)

Add (segment)

:RampSlope
Segment

RampSlopeSegment()

setDuration (duration)

setOffset (value)

setSlope (value)

Add (segment)

:Sine
Segment

SineSegment()

setDuration (duration)

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

Add (segment)

Figure 39 Signal creation: Const-, Ramp- RampSlope- and SineSegment (part 1)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

65

HIL User

:SegmentSignal
Description

setDuration (duration)

Signal : Saw
Segment

SawSegment()

:PulseSegment
PulseSegment()

:ExpSegment
ExpSegment()

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

Add (segment)

setDutyCycle (value)

setDuration (duration)

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

Add (segment)

setDutyCycle (value)

setDuration (duration)

setStart (value)

setStop (value)

Add (segment)

setTau (value)

setDuration (duration)

:IdleSegment
IdleSegment()

Add (segment)

Figure 40 Signal creation: Saw-, Pulse-, Exp- and IdleSegment (part 2)

Common functionalities

66 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HIL User

:SegmentSignal
Description

:Operation
Segment

OperationSegment()

:SignalValue
Segment

SignalValueSegment()

setOperation (operation)

setLeftSegment (value)

setRightSegment (value)

Add (segment)

:FloatVector
Value

FloatVectorValue()

:FloatVector
Value

FloatVectorValue()

SignalValue() : xVector : VectorValue, fcnValues : VectorValue
:SignalValue

SetValues (xVector, fcnValue)

setSignalValue (signal)

setInterpolation (interpolation)

Add (segment)

Figure 41 Signal creation: Operation- and SignalValueSegment (part 3)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

67

4.7.4.2 CREATING AN OPERATION SIGNAL

The next sequence diagrams (Figure 42 and Figure 43) are describing the creation of an
OperationSignal in detail. It consists of two SegmentSignalDescriptions
which are combined by the given operation. The SignalDescriptions itself can
have more than one signal segment inside. In this case the first has 2 signal segments
(RampSegment and SawSegment) and the second has only one signal segment
(SineSegment). The operation in this example is Multiplication.

HIL User

:OperationSignal
Description

OperationSignalDescription()

setName (value)

This method creates
internally two signals
and returns a third
signal multiplaying
the other two ones

setDuration (duration)

Add()

SegmentSignalDescription()

SegmentSignalDescription()

SegmentSignalDescription()

setStartValue (value)

setStopValue (value)

Figure 42 Create an OperationSignal (part 1)

Common functionalities

68 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

H
IL

 U
s
e
r

:O
p
e

ra
ti
o
n
S

ig
n

a
l

D
e
s
c
ri

p
ti
o

n

s
e

tD
u
ra

ti
o

n
 (

d
u

ra
ti
o
n

)

A
d
d

()

S
a
w

S
e

g
m

e
n
t(

)

s
e

tO
ff
s
e
t

(v
a

lu
e
)

s
e

tA
m

p
lit

u
d

e
 (

v
a

lu
e
)

s
e

tP
e

ri
o
d

 (
v
a
lu

e
)

s
e

tD
u
ty

C
y
c
le

 (
v
a
lu

e
)

s
e

tP
h

a
s
e
 (

v
a
lu

e
)

s
e

tD
u
ra

ti
o

n
 (

d
u

ra
ti
o
n

)

A
d
d

()

S
in

e
S

e
g
m

e
n

t(
)

s
e

tO
ff
s
e
t

(v
a

lu
e
)

s
e

tA
m

p
lit

u
d

e
 (

v
a

lu
e
)

s
e

tP
e

ri
o
d

 (
d
u

ra
ti
o
n

)

s
e

tP
h

a
s
e
 (

v
a
lu

e
)

s
e

tR
ig

h
tS

ig
n
a

l(
)

s
e

tO
p

e
ra

ti
o
n

 (
o
p

e
ra

ti
o
n

)

s
e

tL
e

ft
S

ig
n
a

l
(s

ig
n
a
l)

e
M

U
L
T

s
e
g

m
e

n
ts

ig
n
a

l
D

e
s
c
ri

p
ti
o
n

1

s
e
g

m
e

n
ts

ig
n
a

l
D

e
s
c
ri

p
ti
o
n

2

Figure 43 Create an OperationSignal (part 2)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

69

4.7.4.3 CREATING A WOBBLE SIGNAL

In this example (Figure 44) a periodic signal is created. The frequency property is
described by a saw signal, so that the sine signal is wobbling.

HIL User

periodSignal : Segment
SignalDescription

SegmentSignalDescription()

This method creates
sine signal whose
period changes over
time. Here the
frequency is described
by a saw signal.

setDuration (duration)

Add (segment)

SawSegment()

setOffset (value)

setAmplitude (value)

setPeriod (value)

setDutyCycle (value)

setPhase (value)

SegmentSignalDescription()

SineSegment()

setDuration (duration)

Add (segment)

setOffset (value)

setAmplitude (value)

setPeriod (value)

setPhase (value)

add the
SawSegment

set as parameter the
periodSignal

Figure 44 Create a wobbling signal

Common functionalities

70 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.7.4.4 SIGNAL DESCRIPTION SET

In this example (Figure 45) the access to a signal description set is shown. Two signal
descriptions, already created before, are added to the signal description set. Then the set
is queried for the names and the contained descriptions. Each of the descriptions is
converted into a SignalValue object.

HIL User

SignalDescription1
: SignalDescription

This method creates a
signal description set
containing two signals.
Further this example
shows how to access
the elements of a signal
description set.

Add (signal)

SignalDescriptionSet()

getNames() : A_UNICODE2STRING[]

Contains (name) : A_BOOLEAN

CreateSignalValue (sampleRate) : SignalValue

SignalDescription2
: SignalDescription

:Signal
DescriptionSet

Add (signal)

CreateSignalValue (sampleRate) : SignalValue

GetByName (name) : SignalDescription

SignalDescription1

SignalDescription2

Figure 45 Create and query a SignalDescriptionSet

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

71

4.7.4.5 LOADING THE SIGNAL DESCRIPTION

The Figure 46 shows the alternative way to get a signal description set: via loading an
existing set from a STI file. Please, see SignalDescriptionFormat.xsd and SchemaDoc for
the definition and a description of the STI file format. The output of this example is written
to file SignalDescriptionSet.sti. From this file, the MAT file VectorData.mat is referenced,
containing sample data.

HIL User

:SignalDescriptionSet

This method loads a
signal description set.

SignalDescriptionsSTIReader (fileName)

Load (reader)

:SignalDescriptions
STIReader

SignalDescriptionSet()

Figure 46 Load a SignalDescriptionSet

4.7.4.6 SAVING THE SIGNAL DESCRIPTION

Figure 47 shows how to save a signal description set to a file for further reuse. Again, see
SignalDescriptionFormat.xsd and SchemaDoc for the definition and a description of the
STI file format.

HIL User

:SignalDescriptionSet

This method saves a
signal description set.

SignalDescriptionsSTIWriter (fileName)

Save (writer)

:SignalDescriptions
STIWriter

Figure 47 Save signal description set

Common functionalities

72 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.8 WATCHER

4.8.1 GENERAL

The Watcher is conceptually designed as a generic event generator. It can be used e.g.
for the trigger definition of captures.

class WatcherHandling

ConditionW atcher

+ ConditionWatcher()

+ getCondition() : A_UNICODE2STRING

+ setCondition(condition :A_UNICODE2STRING)

+ getDefines() : StringNamedCollection

+ setDefines(defines :StringNamedCollection)

Collections::StringNamedCollection

+ getCount() : A_UINT64

+ getNames() : A_UNICODE2STRING[]

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) : A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ GetEnumerator() : Enumerator

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

Watcher

{abstract }

DurationW atcher

+ DurationWatcher(duration :A_FLOAT64)

+ getDuration() : A_FLOAT64

+ setDuration(duration :A_FLOAT64)

1

Def ines
1

Figure 48 Watcher

HIL API distinguishes between 2 watcher types: ConditionWatcher and
DurationWatcher.

DurationWatcher

The DurationWatcher fires after a specified duration relative to the start of capture.
No matter which type of start occurs, manual or triggered.
This watcher type can only be used in Capture StopTrigger, because it is relative to the
start of capturing.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

73

ConditionWatcher

For the definition of a ConditionWatcher, a condition and zero, one, or multiple
defines are set.
A define maps a name to a model path. The advantage of using defines is that these
names can be used in the definition of the condition. This makes a condition more
readable for humans and further leads to a decoupling of the test from the model. All
defines must be added to a String collection and then added as one object to the
ConditionWatcher. The condition and all defines are described as strings.

e.g. "velocity" mapped to "Model Root/Subsystem/Vel/Value"

A condition defines when a ConditionWatcher fires. The syntax of the condition is
defined in [ASAM Expression]. The condition syntax will be validated inside the
setCondition method. The condition is cyclic examined after start of the Watcher. If
the condition is true the ConditionWatcher fires.

e.g. velocity > 100

The Watcher itself has no states. It only triggers the Capture with an event (see Capture
state diagram in the chapter above).

4.8.2 USAGE IN CAPTURE

For capturing, the Start and Stop trigger can be set via a Watcher.
The Start trigger can only be a ConditionWatcher.
The Stop trigger can be of both types, because the DurationWatcher needs a
defined start.

The Start and Stop trigger can be set in Capture State eCONFIGURED. After starting the
capturing it stays in eACTIVATED until the Start trigger fires. To stop the capturing also a
trigger can be set.

Common functionalities

74 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.9 DATA CAPTURING

4.9.1 GENERAL APPROACH

Capturing is a process of acquiring data in a continous data stream. It guarantees that all
process data can be retrieved as they occur related to the real-time service resp. to the
real-time task.
The classes in the Capturing and in the Capture Result package are used to define
captures, to control the execution of capturing and to obtain the measured data as results.
They are located in the Common package as they are used for the Model Access Port as
well as for the ECU M Port.

4.9.2 CAPTURING

The main class of the Capturing package is the class Capture (Figure 49). It is used to
define captures and to control the execution of capturing.

class Capture

Capture

+ getCaptureResult() : CaptureResult

+ getBookmarkDefinitions() : BookmarkDefinitionCollection

+ setBookmarkDefinitions(bookmarkDefinitions :BookmarkDefinitionCollection)

+ getPort() : Port

+ getState() : ECaptureState

+ getMinBufferSize() : A_INT64

+ setMinBufferSize(minBufferSize :A_INT64)

+ getVariables() : A_UNICODE2STRING[]

+ setVariables(variableNames :A_UNICODE2STRING[])

+ AddBookmarkNow(message :A_UNICODE2STRING)

+ ClearConfiguration()

+ Fetch(whenFinished :A_BOOLEAN) : CaptureResult

+ SetStartTriggerCondition(triggerDefinition :ConditionWatcher, delay :A_FLOAT64)

+ SetStopTriggerCondition(triggerDefinition :Watcher, delay :A_FLOAT64)

+ Start(writer :CaptureResultWriter)

+ Stop()

Figure 49 The class Capture

4.9.2.1 CAPTURE

An instance of class Capture represents a capture definition. It does not have any
constructors. A capture is defined by the port for which a capture shall be defined
(MAPort or ECUMPort). The capture is defined by setting

 the variables to be captured,

 bookmark definitions,

 the minimal buffer size,

 the start trigger condition including a delay, and

 the stop trigger condition including a delay.

After configuration of the Capture object, the method Start() is called to activate the
start trigger. After activating the Capture object, the capturing starts at the moment the
trigger condition becomes true. In case no start trigger is set, the capturing starts
immediately after calling method Start(). Note that the method Start() is an

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

75

asynchronous (non-blocking) method. It returns immediately after being called – even if
the capturing has not been started yet.

The capturing is stopped either when the stop trigger fires or by calling the method
Stop(). Note that the start trigger is defined by a ConditionWatcher object, the
stop trigger is defined either by a ConditionWatcher or by a DurationWatcher
object (see Chapter 4.8). This allows stopping a capturing after a specific amount of time
or in dependence of a specific boolean condition. In case no stop trigger is set, the
capturing runs until the method Stop() is called.

If the trigger condition of the start trigger becomes true again during the capturing or after
ending the capturing, this does not have any influence to the capturing or its result. The
same holds true for the stop trigger: If it becomes true again after the capture ended, this
does not influence the capturing or its result.

Furthermore, the class Capture provides methods to obtain the captured data and to
observe the current state of the capturing, e.g. to check if the start trigger occurred
already.

Special cases: Delayed Triggering

When setting a start or a stop trigger for a Capture object, it is possible to set a delay. In
case the delay is not zero, this leads to the following behavior, as depicted in the following
Figure 50:

-

implicit “max duration”

t

delay

+

implicit “min duration”
- +

start trigger event stop trigger event

Figure 50 Start and Stop Trigger used

If the delay for the start trigger is positive, the capturing starts the specified amount of time
after the start trigger became true – or in case no start trigger has been specified, the
capturing starts the specified amount of time after the Start() method has been called.
If the delay for the start trigger is negative, the capturing starts the specified amount of
time before the start trigger occurred, i.e. the capture result will contain even values

Common functionalities

76 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

before the start trigger became true. Obviously, this case is limited: It is not possible to
obtain measured values which occurred before the call of the Start() method.

If the delay for the stop trigger is positive, the capturing stops the specified amount of time
after the stop trigger occurred (or Stop() is called resp.). If it is negative, it stops the
specified amount of time before, i.e. the capture result will not contain the measured
values that occurred during the delay time before the stop trigger occurred (or Stop() is
called resp.).

4.9.3 CAPTURE RESULT

class CaptureResult Handling

CaptureResul t

+ CaptureResult()

+ CaptureResult(reader :CaptureResultReader)

+ getMetaData() : StringNamedCollection

+ getSignalGroupNames() : A_UNICODE2STRING[]

+ ExtractSignalValue(signalGroupName :A_UNICODE2STRING, variable :A_UNICODE2STRING) : SignalValue

+ GetBookmarkVectorByName(name :A_UNICODE2STRING) : SignalValue

+ GetMetaData() : StringNamedCollection

+ GetSignalGroupValue(identifier :A_UNICODE2STRING) : SignalGroupValue

+ Open(reader :CaptureResultReader)

+ Save(writer :CaptureResultWriter)

Collections::StringNamedCollection

+ getCount() : A_UINT64

+ getNames() : A_UNICODE2STRING[]

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) : A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ GetEnumerator() : Enumerator

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

MetaData

0..1

Figure 51 Capture results

CaptureResult

A CaptureResult object holds the data captured by a Capture object. It provides
access to objects of type ValueContainer::SignalGroupValue which holds the
sampled data.

MetaData

Via the MetaData association, additional information can be added for the
CaptureResult.

4.9.4 BOOKMARK HANDLING

The Capturing package contains also the class BookmarkDefinition to define
bookmarks. Bookmarks are special marks for captured data, when specific conditions
become true.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

77

Figure 52 Bookmark handling

Capture::BookmarkDefinitionCollection

The class BookmarkDefinitionCollection is the collection to hold the
BookmarkDefinition objects, defined for a Capture object.

Capture::BookmarkDefinition

BookmarkDefinition objects define specific conditions to be observed during
capturing. In case such a condition becomes true during capturing, a mark is set in the
CaptureResult object. Besides the ConditionWatcher object that defines the
condition to be observed, a bookmark definition consists of a name and a message. Both
are used by the capture result object (see below).

Common functionalities

78 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

CaptureResultHandling::Bookmarks Association

class CaptureResult Handling

CaptureResul t

+ CaptureResult()

+ CaptureResult(reader :CaptureResultReader)

+ getMetaData() : StringNamedCollection

+ getSignalGroupNames() : A_UNICODE2STRING[]

+ ExtractSignalValue(signalGroupName :A_UNICODE2STRING, variable :A_UNICODE2STRING) : SignalValue

+ GetBookmarkVectorByName(name :A_UNICODE2STRING) : SignalValue

+ GetMetaData() : StringNamedCollection

+ GetSignalGroupValue(identifier :A_UNICODE2STRING) : SignalGroupValue

+ Open(reader :CaptureResultReader)

+ Save(writer :CaptureResultWriter)

XYValue

ValueContainer::SignalValue

+ SignalValue(xVector :VectorValue, fcnValues :VectorValue)

Bookmarks

0..*

Figure 53 Bookmark Association

In case BookmarkDefinition objects have been created and referenced by a
Capture object, the capturing process observes if the bookmark conditions become true
during the capturing. For each bookmark definition whose condition became true at least
once during the capturing, a SignalValue object is created and referenced via the
Bookmarks association from CaptureResult. In this SignalValue, the time stamps
when the bookmark occurred, is stored in the xVector, the message from the bookmark
definition is stored as fcnValue. The SignalValue object is accessible via the
CaptureResult object and its Bookmarks are referenced using the name, specified in
the bookmark definition.

Furthermore, it is possible to set bookmarks manually by calling the Capture object's
method AddBookmarkNow(). This leads to another SignalValue object, referenced
by the CaptureResult object via the Boomarks association. It can be accessed using
the default name "ManualBookmarks". The message can be set for each call of the
AddBookmarkNow() method.

Figure 54 shows a schematic overview of a possible capture result: It shows the
CaptureResult object, containing the measured data, and 3 SignalValue objects
containing bookmarks. The first bookmarks has been defined with the name "name1" and
the message "temp > 80". The second bookmarks has been defined with the name
"name2" and the message "Attention!". Furthermore some manual bookmarks have been
fired: The first one at point of time 3 with the message "msg1", the second one at point of
time 5 with the message "msg2". Note that the SignalValue objects, containing the
bookmarks, do only hold the points of time, when bookmarks occurred. Their xVector is
usually different from the xVector of the CaptureResult object.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

79

Figure 54 Bookmarks and Capture Results

Common functionalities

80 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.9.5 DOCUMENT HANDLING FOR CAPTURE DATA

class _doc_DocumentHandling for Capture Data

DocumentHandling::DocumentManager

{abstract }

CaptureResultReader

{abstract }

CaptureResultWriter

{abstract }

CaptureResultMemoryWriterCaptureResultMDF40WriterCaptureResultMDF40Reader

Figure 55 Document Handling

CaptureResultReader & CaptureResultWriter

Abstract super classes for the concrete reader and writer classes. These classes provide
a Load or a Save method resp. to load and to save CaptureResult objects.

CaptureResultMDF40Reader

This class handles the loading of MDF 4.0.0 files [ASAM MDF]. The loaded data structure
is stored in a CaptureResult object.

CaptureResultMDF40Writer

This class handles the saving of CaptureResult objects compliant to the MDF 4.0.0
format.

CaptureResultMemoryWriter

In case a CaptureResult is not stored in the file system during the capturing process,
an object of the CaptureResultMemoryWriter class is used as writer instance.
Instead of streaming the capture to disk, the CaptureResult is held in the RAM.

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

81

4.9.6 STATE DIAGRAM OF CAPTURING

stm Capturing

Initial

eCONFIGURED

eACTIVATED

eRUNNING

eFINISHED

Capture::

AddBookmarkNow

Capture::Fetch

Capture::Stop

Capture::ClearConfiguration

Capture::AddBookmarkNow

measurement duration reached

stop trigger becomes true

Capture::Fetch

Capture::Stop

Capture::ClearConfiguration

Capture::Fetch

Capture::Stop

Capture::ClearConfiguration

start trigger becomes true

Capture::

setVariables

SetStartTriggerCondition

SetStopTriggerCondition

getBookmarkDefinitions()

.Add/Remove/..

Capture::

getCaptureResult

Capture::ClearConfiguration

Capture::Start

ECUMCPort::CreateCapture

MAPort::CreateCapture

Figure 56 Capturing state diagram

eCONFIGURED

After creation, a Capture object is in state eCONFIGURED. In this state, the capturing is
defined / configured. Usually, it is started when configuration has been done.

eACTIVATED

In this state, the capture waits for the start trigger to become true. When this happens, the
capturing switches to state eRUNNING.

eRUNNING

While residing in this state, data is captured until the stop trigger holds or until Stop() is
called manually.

eFINISHED

In this state, the capturing is finished. The captured data is still available to be fetched.

Common functionalities

82 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

4.9.7 USAGE OF CAPTURING

The sample code for this example will be found at

C# C#\SampleCode\Common\Capturing\CaptureExample.cs
Python Python\SampleCode\Common\CaptureExample.py
Java JAVA\SampleCode\Common\Capturing\CaptureExample.java

Capturing with Watcher

Figure 57, Figure 58 and Figure 59 show how to use capturing. First, a Capture object
has to be configured: Here, the instance of the capture object is created by an instance of
the MAPort. Then, all variables that shall be captured are added to the capture's list of
variables. To define the beginning and the end of the capture, two watcher objects are
created. For a simple human understanding of the trigger conditions, defines are created.
A define relates a name to the path of a model variable. These names are used in the
conditions of the watcher objects. Finally, the watcher objects are set as start and stop
triggers for the Capture object.

Technology_Reference_Interfaces/C%23/SampleCode/Common/Capturing/CaptureExample.cs
Technology_Reference_Interfaces/Python/SampleCode/Common/CaptureExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/Common/Capturing/CaptureExample.java

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

83

H
IL

 U
s
e
r

:M
A

P
o

rt
M

A
P

o
rt

 (
c
o

n
fi
g

u
ra

ti
o

n
D

ic
t)

C
re

a
te

C
a
p

tu
re

 (
ta

s
k
)

:
C

a
p
tu

re

A
d

d
 (

n
a
m

e
,
it
e

m
)

:C
a

p
tu

re

s
e

tV
a

ri
a
b

le
s
 (

v
a

ri
a

b
le

N
a
m

e
s
)

s
e

tD
e

fi
n

e
s
 (

d
e
fi
n

e
s
)

c
re

a
te

 M
A

P
o

rt

D
e

fi
n

e
s
 :

 S
tr

in
g

N
a
m

e
d
C

o
lle

c
ti
o
n

g
e
t

a
 c

a
p
tu

re

o
b
je

c
t
fr

o
m

 t
h
e

M

A
P

o
rt

 i
n
s
ta

n
c
e

s
e

t
v
a

ri
a

b
le

s
 t

o
 b

e

c
a

p
tu

re
d

c
a

ll
n

 t
im

e
s
 A

d
d

()

fo
r

n
 D

e
fi
n

e
s

c
re

a
te

 S
ta

rt
W

a
tc

h
e

r
a

n
d

 s
e

t
th

e
 D

e
fi
n

e
s

c
re

a
te

 a
 s

tr
in

g
 c

o
lle

c
ti
o
n

 f
o
r

th
e
 D

e
fi
n
e

s
()

c
re

a
te

 d
e

fi
n

e
s
 f

o
r

s
ta

rt
 t

ri
g

g
e

r
(a

w

a
tc

h
e

r)

S
ta

rt
T

ri
g

g
e

r
:

C
o

n
d

it
io

n
W

a
tc

h
e

r

C
o

n
d

it
io

n
W

a
tc

h
e

r(
)

s
e

tC
o

n
d
it
io

n
 (

c
o

n
d
it
io

n
)

D
e

fi
n

e
s
 :

 S
tr

in
g

N
a

m
e

d
C

o
lle

c
ti
o

n

c
re

a
te

 a
 s

tr
in

g
 c

o
lle

c
ti
o
n

 f
o
r

th
e
 D

e
fi
n
e

s
()

s
e

t
c
o

n
d
it
io

n
 t

o
 e

.g
.

“A
M

 >
 1

7
0
 a

n
d

E

S
 >

 3
0

0
0
”

A
d

d
 (

n
a
m

e
,
it
e

m
)

c
a

ll
n

 t
im

e
s
 A

d
d

()

fo
r

n
 D

e
fi
n

e
s

c
re

a
te

 d
e

fi
n
e

s
 f

o
r

s
to

p
 t
ri

g
g

e
r

(a

w
a
tc

h
e

r)

S
to

p
T

ri
g

g
e

r
:

C
o

n
d

it
io

n
W

a
tc

h
e

r

C
o

n
d

it
io

n
W

a
tc

h
e

r(
)

s
e

tD
e

fi
n

e
s
 (

d
e
fi
n

e
s
)

c
re

a
te

 S
to

p
W

a
tc

h
e
r,

s
e

t
th

e
 D

e
fi
n

e
s
 a

n
d

c
o

n
d

it
io

n

s
e

tC
o

n
d
it
io

n
 (

c
o

n
d
it
io

n
)

S
e

tS
ta

rt
T

ri
g
g

e
rC

o
n
d

it
io

n
 (

tr
ig

g
e

rD
e

fi
n

it
io

n
,
d

e
la

y
)

s
e

t
S

ta
rt

T
ri

g
g

e
r

C
o
n

d
it
io

n
 w

it
h

n

e
g

.
d
e

la
y
;

w
a
it
 0

.4
 s

e
c
o

n
d

s

b
e
fo

re
 a

c
ti
v
a
ti
n

g

s
e

t
S

to
p

T
ri
g

g
e

rC
o

n
d
it
io

n

w
it
h

 p
o

s
it
iv

e
 d

e
la

y

S
e

tS
to

p
T

ri
g

g
e
rC

o
n
d

it
io

n
 (

tr
ig

g
e

rD
e

fi
n
it
io

n
,

d
e
la

y
)

Figure 57 Usage of capturing with Watcher (part 1)

At the beginning of Figure 57, bookmarks are defined for the capturing: First, two other
ConditionWatcher objects are created. Then, each of these ConditionWatcher
objects plus a name and a message are used to create a BookmarkDefinition
object. Finally, the instances of BookmarkDefinition added to the Capture's
collection of bookmark definitions.

Common functionalities

84 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

H
IL

 U
s
e
r

:M
A

P
o
rt

:C
a
p
tu

re

B
o
o
k
m

a
rk

W
a
tc

h
e

r
:

D
e
fi
n
it
io

n
W

a
tc

h
e
r

c
re

a
te

 D
e
fi
n
e
s
 f

o
r

B
o
o
k
m

a
rk

D
e
fi
n
it
io

n
W

a
tc

h
e
r

B
M

D
e
fi
n
e
s
 :
 S

tr
in

g
N

a
m

e
d
C

o
lle

c
ti
o
n

c
re

a
te

 B
o
o
k
m

a
rk

D
e
fi
n
it
io

n
C

o
lle

c
ti
o
n

B
M

W
a
tc

h
D

e
fi
n
e
s
 :

S
tr

in
g
N

a
m

e
d
C

o
lle

c
ti
o
n

A
d
d
 (

n
a
m

e
,
it
e
m

)

A
d
d
 (

n
a
m

e
,
it
e
m

)

C
o
n
d
it
io

n
W

a
tc

h
e
r(

)

s
e
tD

e
fi
n
e
s
 (

d
e
fi
n
e
s
)

s
e
tC

o
n
d
it
io

n
 (

c
o
n
d
it
io

n
)

B
o
o
k
m

a
rk

W
a
tc

h
e
rE

S
:
C

o
n
d
it
io

n
W

a
tc

h
e
r

A
d
d
 (

n
a
m

e
,
it
e
m

)

C
o
n
d
it
io

n
W

a
tc

h
e
r(

)

s
e
tD

e
fi
n
e
s
 (

d
e
fi
n
e
s
)

s
e
tC

o
n
d
it
io

n
 (

c
o
n
d
it
io

n
)

:
B

o
o
k
m

a
rk

D
e
fi
n
it
io

n
C

o
lle

c
ti
o
n

B
o
o
k
m

a
rk

D
e
fi
n
it
io

n
T
e
m

p
C

h
e
c
k
 :

B
o
o
k
m

a
rk

D
e
fi
n
it
io

n

B
M

D
e
fi
n
it
io

n
E

S
 :

B
o

o
k
m

a
rk

D
e
fi
n
it
io

n

B
o
o
k
m

a
rk

D
e
fi
n
it
io

n
 (

 t
ri
g
g
e
rD

e
fi
n
it
io

n
,
n
a
m

e
,
m

e
s
s
a
g

e
)

B
o
o
k
m

a
rk

D
e
fi
n
it
io

n
 (

 t
ri
g
g
e
rD

e
fi
n
it
io

n
,
n
a
m

e
,
m

e
s
s
a
g

e
)

c
re

a
te

 B
o
o
k
m

a
rk

D

e
fi
n
it
io

n
s

c
re

a
te

 W
a
tc

h
e
r

fo
r

B
o
o
k
m

a
rk

D
e
fi
n
it
io

n
s

Figure 58 Usage of capturing with Watcher (part 2)

Common functionalities

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

85

After setting the minimal buffer size, an MDF 4.0.0 writer for capture results is created.
Starting the capture with this writer causes the capture to stream the captured data
directly to disk using the MDF 4.0.0 format [ASAM MDF]. During capturing, data is fetched
and manual bookmarks are added. The capture is ended manually, i.e. independent of the
stop trigger, by calling the Capture's Stop() method. Finally, the Capture provides the
capture result and its configuration is cleared.

HIL User

:MAPort :Capture

set Definitions to
Collection

Add (name, item)

Add (name, item)

: BookmarkDefinition
Collection

setBookmarkDefinitions (bookmarkDefinitions)set Bookmark
Definitions

setMinBufferSize (minBufferSize)set minBufferSize

create
CaptureWriter

CaptureResultMDF40Writer (fileName) :CaptureResult
MDF40Writer

Start (Writer)start capturing

do something and
poll the state, fetch
result and
AddBookmarkNow
until it is not
eRunning anymore

Stop()stop capturing

getCaptureResult() : CaptureResult
get complete
aquired data

getPort() : Portget port

getVariables() : A_UNICODE2STRING[]
get variables

Fetch (whenFinished) : CaptureResult

getState() : ECaptureState

getState() : ECaptureState

AddBookmarkNow (message)

ClearConfiguration()clear configuration

Figure 59 Usage of capturing with Watcher (part 3)

Model Access Port

86 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

5 MODEL ACCESS PORT

5.1 USER CONCEPT

5.1.1 GENERAL

The Model Access port is the central point for managing access to the model, simulated
on the HIL simulator. This port provides functionality for read- and write-access to the
model, to set up capturings and stimuli, and to manage model variables.

When using this port, it is required that all initialization of the HIL simulator, like download
and start of the model, has been done previously.

The ModelAccessPort-package is related to its sub-package "Stimulus" and to the
packages "Common:Capturing" and "Common:CaptureResult". The two latter ones are
not sub-packages of ModelAccess as they are also used by the ECUPort.

5.1.2 MODEL ACCESS PORT

class MAP...

MAPort

+ MAPort(configurationDict :StringNamedCollection)

+ getTaskNames() : A_UNICODE2STRING[]

+ getVariableNames() : A_UNICODE2STRING[]

+ CreateCapture(task :A_UNICODE2STRING) : Capture

+ CreateSignalGenerator() : SignalGenerator

+ GetDataType(variableName :A_UNICODE2STRING) : DataType

+ IsReadable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ IsWritable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ Read(variableName :A_UNICODE2STRING) : BaseValue

+ Write(variableName :A_UNICODE2STRING, value :BaseValue)

Port::Port

Figure 60 Model Access Port

Class MAPort

On the one hand, this class provides general functionality like for example functionality to
get information about available model variables, their readability and writeability and to

Model Access Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

87

read and write model variables. On the other hand, it provides initialization functionality to
create Capture and SignalGenerator instances.

5.1.3 STIMULUS

class Stimulus

SignalGenerator

+ SignalGenerator()

+ SignalGenerator(reader :SignalGeneratorReader)

+ getAssignments() : StringNamedCollection

+ getElapsedTime() : A_FLOAT64

+ getSignalDescriptionSet() : SignalDescriptionSet

+ setSignalDescriptionSet(value :SignalDescriptionSet)

+ getState() : SignalGeneratorState

+ setAssignments(assignments :StringNamedCollection)

+ DestroyOnTarget()

+ LoadToTarget()

+ Load(reader :SignalGeneratorReader)

+ Pause()

+ Save(writer :SignalGeneratorWriter)

+ Start()

+ Stop()

Collections::StringNamedCollection

+ getCount() : A_UINT64

+ getNames() : A_UNICODE2STRING[]

+ Add(name :A_UNICODE2STRING, item :A_UNICODE2STRING)

+ Contains(name :A_UNICODE2STRING) : A_BOOLEAN

+ GetByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

+ GetEnumerator() : Enumerator

+ RemoveAll()

+ RemoveByName(name :A_UNICODE2STRING) : A_UNICODE2STRING

1

Assignments

1

Figure 61 SignalGenerator

Class SignalGenerator

A SignalGenerator defines stimuli and manages their execution. For the definition of
a stimulus, a SignalDescriptionSet is referenced by the SignalGenerator.
The signals from the SignalDescriptionSet are assigned with model variables in
the "Assignments" collection. For the management of the stimulus, functionality is
provided for downloading the stimulus to the HIL simulator, for starting, stopping, and
pausing it and for observing its current state.

Model Access Port

88 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

5.1.4 DOCUMENT HANDLING

class Stimulus

SignalGeneratorReader

{abstract }

+ Load(signalGenerator :SignalGenerator*)

SignalGeneratorSTIReader

+ SignalGeneratorSTIReader(fi leName :A_UNICODE2STRING)

+ getFileName() : A_UNICODE2STRING

+ setFileName(fileName :A_UNICODE2STRING)

SignalGeneratorWriter

{abstract }

+ Save(signalGenerator :SignalGenerator)

DocumentHandling::DocumentManager

{abstract }

SignalGeneratorSTIW riter

+ SignalGeneratorSTIWriter(fi leName :A_UNICODE2STRING)

+ getFileName() : A_UNICODE2STRING

+ setFileName(fileName :A_UNICODE2STRING)

Figure 62 Document Handling

SignalGeneratorReader & SignalGeneratorWriter

These classes are abstract super classes for the concrete reader and writer classes.
These classes provide a Load or a Save method resp. to load and to save
SignalGenerator objects.

SignalGeneratorSTIReader

This class handles the loading of a SignalGenerator object stored in a STI files. STI
is a file format for SignalGenerator objects which is also part of the HIL API
standard. The loaded data structure is stored in a SignalGenerator object.

SignalGeneratorSTIWriter

This class handles the saving of SignalGenerator objects in STI format. STI is a file
format for SignalGenerator objects which is also part of the HIL API standard.

Model Access Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

89

5.1.5 STATE DIAGRAM OF SIGNAL GENERATOR

The state of the SignalGenerator class can be queried at any time by the method
SignalGenerator.getState().

stm Stimulus

eREADY

eRUNNING

eSTOPPED

ePAUSED

Final

eIN_CONFIGURATION

eFINISHED

SignalGenerator::DestroyOnTarget

SignalGenerator::Start()

destruction of SignalGenerator

SignalGenerator::LoadToTarget

configuration methods

on SignalGenerator

SignalGenerator::DestroyOnTarget

SignalGenerator::Stop()

SignalGenerator::DestroyOnTarget

SignalGenerator::Start()

new SignalGenerator

SignalGenerator::Pause()

SignalGenerator::Stop()

SignalGenerator finished

SignalGenerator::

DestroyOnTarget

SignalGenerator::getElapsedTime

SignalGenerator::getRemainTime

SignalGenerator::

DestroyOnTarget

SignalGenerator::Start()

SignalGenerator::Start()

Figure 63 Signal generator state diagram

eIN_CONFIGURATION

After creation, a SignalGenerator object is in state eIN_CONFIGURATION. In this
state, the signal generation is defined / configured. Usually, it is loaded to the HIL
simulator target, when configuration has been done.

eREADY

After loading a defined signal description set to the HIL Simulator target, the
SignalGenerator object is in state eREADY. In this state, it waits for being started.

eRUNNING

After starting the signal generation, the SignalGenerator object is in state eRUNNING. In
this state, the model variables are stimulated by the actual signals as defined.

Model Access Port

90 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

eFINISHED

If signal generation is finished, this state is entered.

ePAUSED

Signal generation can be paused. In this case, state ePAUSED is entered. Leaving this
state the signal generation resumes, and does not start at beginning.

eSTOPPED

If the signal generation is stopped, this state is entered.

Model Access Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

91

5.2 USAGE OF THIS PORT

In this chapter, the usage of this port is described by means of some examples. It is
shown how to read and write model variables and how to set up a signal generator or a
capture. How to use captures is shown in Chapter 4.9.

5.2.1 READING & WRITING MODEL VARIABLES

The sequence diagram in Figure 64 depicts how to handle and how to access model
variables: First, an instance of the model access port is created. When such an instance
has been created, it is assumed that the HIL simulator has been initialized and a
simulation model is running. The instance of the MAPort is used to request all available
model variables and all tasks (timing raster) existing in the simulation. A Capture object
is created by the MAPort instance with a raster specified by one of the existing tasks.

Model Access Port

92 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HIL User

:MAPort

:Capture

MAPort()

getVariableNames() : A_UNICODE2STRING[]

getTaskNames() : A_UNICODE2STRING[]

Load (reader)

CreateSignalGenerator() : SignalGenerator

IsReadable (variableName) : A_BOOLEAN

GetDataType (variableName) : DataType

Read (variableName) : BaseValue

CreateCapture (task) : Capture

:Signal
Generator

SignalGeneratorSTIReader (fileName)

IsWritable (variableName) : A_BOOLEAN

Write (variableName, value)

get all avaiable
signals and
tasks

create capture
object
look to capture file
for more detailed
operation
examples

create signal
generator object

change the value of a
variable and verify it

check signals

Read (variableName) : BaseValue

:Signal
Generator
STIReader

:BaseValue

Figure 64 Model AccessPort example

In order to stimulate model variables by signals, a SignalGenerator instance is
required that is also constructed by the MAPort object. Existing signal descriptions can
be loaded (see Chapter 5.2.2 for details). The usage of the Capture and the
SignalGenerator instances is described in Chapters 4.9 and 5.2.2.

Before accessing a model variable, the MAPort instance can check if the variable is
readable or writeable (or both) and of which data type it is. Finally the variable is accessed
by the Read() and the Write() method of the MAPort object.

Model Access Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

93

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\MAPort\MAPortSample.cs
Python Python\SampleCode\MAPort\MAPortExample.py
Java JAVA\SampleCode\MAPort\MAPortExample.java

5.2.2 STIMULATING MODEL VARIABLES

How to stimulate model variables by signals is depicted in Figure 65 and Figure 66. As
described in the previous chapter, instances of class MAPort and of class
SignalGenerator need to be created beforehand. Using a
SignalGeneratorSTIReader object, existing signals are loaded as described in
Chapter 4.6. An example for such signals is presented in Chapter 4.7.

H
IL

 U
s
e

r

:M
A

P
o

rt
M

A
P

o
rt

()

L
o
a
d

 (
S

ig
n
a

lG
e
n

e
ra

to
rR

e
a
d

e
r)

C
re

a
te

S
ig

n
a
lG

e
n
e
ra

to
r(

)
:
S

ig
n
a
lG

e
n
e
ra

to
r

g
e
tF

ile
N

a
m

e
()

 :
 A

_
U

N
IC

O
D

E
2
S

T
R

IN
G

g
e
tS

ig
n
a
lD

e
s
c
ri
p
ti
o

n
S

e
t(

)
:
S

ig
n
a
lD

e
s
c
ri
p
ti
o
n
S

e
t

:S
ig

n
a
l

G
e
n
e
ra

to
r

S
ig

n
a

lG
e
n
e

ra
to

rS
T

IR
e

a
d
e

r
(f

ile
N

a
m

e
)

s
e
tF

ile
N

a
m

e
(f

ile
N

a
m

e
)

s
e
tS

ig
n
a
lD

e
s
c
ri
p

ti
o

n
S

e
t(

)
:
S

ig
n
a
lD

e
s
c
ri
p
ti
o
n
S

e
t

c
re

a
te

 M
A

P
o
rt

c
o
n
n

e
c
t
s
ig

n
a
ls

d
e
s
c
ri
p

ti
o

n
 f

ro
m

 s
ti

fi
le

 w
it
h
 r

e
a
l
s
ig

n
a

ls

in
s
id

e
 s

im
u
la

to
r

A
d
d
 (

n
a
m

e
,
it
e
m

)

:S
ig

n
a
l

G
e

n
e
ra

to
r

S
T

IR
e

a
d
e

r

:S
ig

n
a
l

D
e

s
c
ri
p
ti
o

n
S

e
t

A
s
s
ig

n
m

e
n
ts

:S
tr

in
g
N

a
m

e
d

C
o
lle

c
ti
o
n

c
re

a
te

 s
ig

n
a
l

g
e
n
e

ra
to

r
o
b
je

c
t

c
re

a
te

S

T
IR

e
a
d
e

r

g
e
t
a

tt
a
c
h
e

d

fi
le

n
a

m
e
 o

f
S

ig
n
a

lG
e
n
e

ra
to

r
S

T
IR

e
a
d
e

r

s
e
t
n

e
w

 f
ile

n
a
m

e
 t
o

S
ig

n
a

lG
e
n
e

ra
to

r
S

T
IR

e
a
d
e

r

c
re

a
te

S

ig
n
a

lD
e

s
c
ri

p
ti
o
n

S
e
t

v
ia

 L
o
a

d

g
e
t
c
re

a
te

d

S
ig

n
a

lD
e

s
c
ri

p
ti
o
n

S
e
t

s
e
t
c
re

a
te

d

S
ig

n
a

lD
e

s
c
ri

p
ti
o
n

S
e
t

to

M
y
S

ig
n
a
lG

e
n
e
ra

to
r

1
..
.
n

a
s
s
ig

n
m

e
n
ts

to

 a
d

d

Figure 65 SignalGenerator example (part 1)

C%23/ASAM.HILAPI/SampleCode/MAPort/MAPortSample.cs
Python/SampleCode/MAPort/MAPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/MAPort/MAPortExample.java

Model Access Port

94 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

After executing the Load() method, signal descriptions are referenced by the
SignalGenerator via a SignalDescriptionSet object. It may be that the file
contains already information that assigns the signals to model variables. In this case the
signal generator is configured after loading. Otherwise, these assignments are specified
by adding name-item pairs to the Assignments-Collection of the SignalGenerator
object. The name is one of the signal names, the item is the model path of the variable to
be stimulated.

H
IL

 U
s
e
r

g
e

tE
la

p
s
e
d

T
im

e
()

 :
 A

_
F

L
O

A
T

s
e

tA
s
s
ig

n
m

e
n

ts
 (

S
tr

in
g

N
a
m

e
d

C
o
lle

c
ti
o
n

)

L
o

a
d

T
o
T
a
rg

e
t(

)

P
a
u
s
e
()

:S
ig

n
a
l

G
e

n
e
ra

to
r

S
ta

rt
()

g
e

tS
ta

te
()

 :
 S

ig
n

a
lG

e
n
e

ra
to

rS
ta

te

lo
a
d

 s
ig

n
a

l
g
e

n
e

ra
to

r
d
a
ta

 t
o

th
e

 h
a
rd

w
a
re

-i
n
-

th
e

-l
o
o

p
 s

im
u

la
to

r

g
e

tF
ile

N
a

m
e

()
 :

 A
_

U
N

IC
O

D
E

2
S

T
R

IN
G

:S
ig

n
a

l
G

e
n

e
ra

to
r

S
T

IR
e
a

d
e

r

:S
ig

n
a
l

D
e

s
c
ri
p

ti
o
n

S
e

t

A
s
s
ig

n
m

e
n
ts

:S
tr

in
g
N

a
m

e
d

C
o
lle

c
ti
o

n

S
ta

rt
()

S
to

p
()

S
a
v
e

 (
S

ig
n
a

lG
e
n

e
ra

to
rW

ri
te

r)

S
ig

n
a
lG

e
n

e
ra

to
rS

T
IW

ri
te

r
(A

_
U

N
IC

O
D

E
2
S

T
R

IN
G

)
:S

ig
n

a
l

G
e
n

e
ra

to
r

S
T

IW
ri
te

r

s
e

tF
ile

N
a
m

e
()

 :
 A

_
U

N
IC

O
D

E
2

S
T

R
IN

G

s
ta

rt
 r

e
a
lt
im

e

e
x
e
c
u

ti
o
n

/g
e
n

e
ra

ti
o
n

 o
f
s
ig

n
a
ls

g
e

t
e

la
p
s
e

d
 t

im
e

p
a

u
s
e

 r
e

a
lt
im

e

e
x
e
c
u

ti
o
n

g
e

t
s
ta

te

(e
P

A
U

S
E

D
 e

x
p

e
c
te

d
)

c
o

n
ti
n

u
e

 r
e
a

lt
im

e

e
x
e
c
u

ti
o
n

s
to

p
 r

e
a
lt
im

e

e
x
e
c
u

ti
o
n

 o
f
s
ig

n
a
ls

c
re

a
te

 S
T

IW
ri
te

r

g
e

t
a

tt
a

c
h
e

d

fi
le

n
a
m

e
 o

f
S

ig
n
a
lG

e
n

e
ra

to
r

S
T

IW
ri
te

r

s
e

t
n

e
w

 f
ile

n
a
m

e
 t
o

S

ig
n
a
lG

e
n

e
ra

to
r

S
T

IW
ri
te

r

s
a

v
e
 s

ig
n

a
l

d
e

s
c
ri

p
ti
o

n
 s

e
t

a
s
s
ig

n
m

e
n
ts

:M
A

P
o
rt

Figure 66 SignalGenerator example (part 2)

Model Access Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

95

After setting these assignments, the stimulus is configured. The next step is to load the
stimulus down to the target which is usually the HIL simulator. Then, the stimulus can be
started, paused, and stopped by calling the corresponding methods. Further, the user can
ask for the current state of the signal generator using the getState() method. Finally,
the signal generator object can be saved including the new assignments, using a
SignalGeneratorSTIWriter as described in Chapter 4.6.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\MAPort\SignalGeneratorSample.cs
Python Python/SampleCode/MAPort/StimulusExample.py
Java JAVA/SampleCode/MAPort/SignalGeneratorExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/MAPort/SignalGeneratorSample.cs
Technology_Reference_Interfaces/Python/SampleCode/MAPort/StimulusExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/MAPort/SignalGeneratorExample.java

Diagnostic Port

96 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6 DIAGNOSTIC PORT

6.1 USER CONCEPT

6.1.1 GENERAL

The Diagnostic Port facilitates the integration of diagnostic tools within the hardware-in-
the-loop test automation setup. A diagnostic tool may consist of hardware, software or
both that allow for ECU diagnostics. Figure 67 outlines the interaction of the participating
components. The test automation system acts as a client of the Diagnostic Port API.

deployment ComponentInteraction

ECU

«device»

Diagnostic Tool

«execution environment»

Test Automation Tool

Figure 67 Component Interaction

The Diagnostic Port enables not only the integration of diagnostic tools within the test
automation system but also the unification and standardization of the diagnostic tools‟
functional interface by defining a standardized API. By implementing the standardized
Diagnostic Port API, diagnostic tool providers make sure that the diagnostic tools are
interchangeable.
The Diagnostic Port API is not a replacement or an extension of existing diagnostic
standards or diagnostic protocol standards. Rather the Diagnostic Port API forms a
programming interface that reflects the client‟s requirements related to a diagnostic tool in
the context of hardware-in-the-loop test automation. As a general rule, existing standards
for diagnostics may be applied underneath the Diagnostic Port or rather by the diagnostic
tool providers.
Underneath the Diagnostic Port there is the diagnostic tool and one or more ECUs that
may be connected to form a network.

6.1.1.1 COMMUNICATION MODES

The Diagnostic Port communicates directly with the diagnostic tool and indirectly with one
or more ECUs. The client has to consider that there is hardware underneath the
diagnostic tool that - depending upon the state of development of the hardware - is more
or less robust and reliable. That is why the client may anticipate hardware and
communication failures underneath the diagnostic tool. The system and communication
failures that are detected by the diagnostic tool are delivered to the Diagnostic Port‟s client
by exceptions.
The Diagnostic Port API allows for setting the communication mode between the
diagnostic tool and the ECU. The communication mode is either automatic or explicit. In
automatic communication mode the client does not need to call the methods for starting
and stopping the communication with the ECU explicitly as this is handled by the

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

97

diagnostic tool. In explicit communication mode however, the client has to call the
methods for starting and stopping the communication explicitly. In automatic
communication mode the diagnostic tool has to check whether the communication with
the ECU has already been started whenever a client calls an method of the ECU class,
the FunctionalGroup class or one of the BaseController classes. If the communication has
not been already started, the diagnostic tool has to start and stop the communication on
its own responsibility so that the communication status is preserved regardless of the
invoked method. The automatic communication mode is the default communication mode.
Chapter 6.2.11 shows how to send a HEX service with explicit communication.

6.1.1.2 MACROS

The Diagnostic Port API supports the execution of macros. Macros are a convenient way
to group and execute a bunch of diagnostic commands. Chapter 6.1.2.2 shows the
classes that are provided for macro commands by the Diagnostic Port API. Additionally,
chapter 6.2.3 demonstrates how to execute macro commands with the Diagnostic Port
API.

6.1.1.3 FUNCTIONAL GROUPS

A functional group is a group of ECUs that have equal or similar functionality. Mostly,
these ECUs can be addressed by a functional address, i.e. a symbolic name for the
functional group. For example, all door controlling ECUs of a vehicle may form a
functional group. Chapter 6.1.2.3 shows the classes that are provided for functional
groups by the Diagnostic Port API.

6.1.1.4 SUPPORTED USE CASES

The Diagnostic Port API provides functions for the following use cases:

Diagnostic Tool

 Configuring the diagnostic tool

 Setting the communication mode

ECU

 Starting and stopping the communication explicitly

 Reading and clearing the fault memory

 Reading identification data

 Reading measurement data by short names

 Reading and writing variant coding data

 Reading and writing data from and to the EEPROM by address

 Reading and writing data from and to the EEPROM by alias names

 Executing diagnostic jobs

 Executing diagnostic job macros

 Sending hex services

Functional Group

 Starting and stopping the communication explicitly

 Reading and clearing the fault memory

 Reading measurement data by short names

 Sending hex services

Diagnostic Port

98 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.1.2 API

The Diagnostic Port API consists of several classes that represent logical components
used in the diagnostic use cases–such as the diagnostic tool, the ECU, the fault memory
etc.–in an abstract manner. The following chapters describe the classes of the Diagnostic
Port API and the relations between them. Furthermore the context and the usage of these
classes is illustrated.

6.1.2.1 ECU

class ECU

Port::Port

DiagPort::DiagPort DiagPort::ECU

DiagPort::ECUFaultMemory

DiagPort::ECUBaseControlle r

Figure 68 ECU classes

The main classes of the Diagnostic Port API are outlined in the class diagram in Figure
68. The DiagPort class is a subclass of the generic Port class. A DiagPort object
can be used to obtain an ECU object that is a representative of a real ECU. Therefore the
ECU object contains methods for high level use cases such as executing diagnostic jobs
and macros, reading variant data or the fault memory for example. The ECU object can
also be used to receive an ECUBaseController object for more sophisticated tasks
such as sending HEX services or reading from the EEPROM.

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

99

6.1.2.2 MACROS

class MacroHierarc...

Macro::Command

{abstract }

Macro::LoopCommand

Macro::Macro Macro::Operation

{abstract }

Macro::Serv iceCall

Macro::WaitCommand

Figure 69 Class hierarchy of the macro classes

The Diagnostic Port API provides classes for the execution of service calls using macro
commands. Macros are compositions of diagnostic service calls. Additional commands
allow for using loop commands and wait commands within macro definitions. Figure 69
depicts the associations between the macro classes. A Macro object contains a list of
methods. An method is either a service call, a loop command or a wait command. A loop
is a kind of macro since it also aggregates several methods.

Diagnostic Port

100 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.1.2.3 FUNCTIONAL GROUPS

class FunctionalGroup

Port::Port

DiagPort::DiagPort DiagPort::

FunctionalGroup

DiagPort::

FunctionalGroupBaseControlle r

DiagPort::

FunctionalGroupFaultMemory

Figure 70 Functional group classes

As illustrated in chapter 6.1.1.3 ECUs may be logically grouped to form functional groups.
The Diagnostic Port API contains several classes in order to meet the demands for
functional groups. See Figure 70 for an overview of the functional group classes. A
DiagPort object can be used to obtain a FunctionalGroup object that is a
representative of a functional group of real ECUs. The FunctionalGroup object
contains methods for high level use cases such as reading measurement data or the fault
memory for example. In order to read or clear the fault memory a
FunctionalGroupFaultMemory object is used. The FunctionalGroup object
can also be used to receive a FunctionalGroupBaseController object for more
sophisticated tasks such as sending HEX services.

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

101

6.2 USAGE OF THIS PORT

This chapter depicts the usage of the Diagnostic Port API. The example use cases are
based on popular tasks in the context of hardware-in-the-loop test automation.

6.2.1 GETTING THE ECU OBJECT

HIL User

:DiagPort

:ECU

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName) : ECU

Figure 71 Getting the ECU object

In the following chapters it is assumed that the client has a valid DiagPort instance.
See the documentation of your HiL-API implementation provider how to obtain this
instance. Before getting the ECU object the client needs to configure the DiagPort
instance. This is done by invoking the Configure() method of the DiagPort object.
The Configure() method takes two parameters: one for the project and one for the
vehicle information table. The diagnostic tool has to know how to deal with the given
parameters in order to access ECUs. Then the ECU object can be obtained by invoking
the GetECU() method of the DiagPort object with parameters for the ECU‟s ID and
the name of the logical link the ECU is connected to. The sequence diagram in Figure 71
depicts the steps needed to obtain the ECU object.

Diagnostic Port

102 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.2.2 READING AND CLEARING THE FAULT MEMORY

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetECUFaultMemory() : ECUFaultMemory

:ECU
FaultMemory

Read() : DiagTroubleCodeNamedCollection

Clear()

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

create a fault memory
object

reads the fault memory
from the given ECU and
store it into the
myFaultmemory object

clears the fault code
memory inside the ECU

Figure 72 Reading and clearing the fault memory

When the client holds a reference to an ECU object (see chapter 6.2.1), reading the fault
memory of the ECU is performed in several steps. The client invokes the
GetEcuFaultMemory() method of the ECU object and gets an ECUFaultMemory
object as return value. The ECUFaultMemory object is used to receive a dictionary of
diagnostic trouble codes. In order to receive this dictionary the client of the diagnostic port
has to invoke the ECUFaultMemory object‟s Read() method. The
DiagTroubleCodeNamedCollection object that is returned provides methods for
getting diagnostic trouble codes by DTC value or listing all available trouble code entries.
See the API documentation of the DiagTroubleCodeNamedCollection class for a
full overview of available methods. Figure 72 depicts the steps needed to read a
diagnostic trouble code by DTC value. The last step clears the fault memory by invoking
the Clear() method of the ECUFaultMemory object. The DiagTroubleCode
object contains getters for short name, long name, description and value of the DTC entry.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

103

6.2.3 READING THE VARIANT CODING DATA

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetVariantData() : A_BYTEFIELD

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

reads the variant data
from the given ECU

Figure 73 Reading the variant coding data

Variant Coding is used to adapt the ECU‟s software to operating conditions. Typically, this
is performed during the production of the vehicle. For example toggling between left-hand
drive and right-hand drive according to the sales country is performed during variant
coding. Figure 73 illustrates the steps needed to read the variant coding of an ECU. After
having received the ECU object from the DiagPort object (see chapter 6.2.1) the
GetVariantData() method is invoked to read the variant coding data.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

104 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.2.4 READING IDENTIFICATION DATA

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetIdentificationData() : StringNamedCollection

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

reads the identification
data from the given ECU

Figure 74 Reading identification data

Identification data is used to identify a given ECU. Identification data may comprise the
vehicle manufacturer‟s part number, hardware part number, hardware version, software
version etc. The Diagnostic Port API client can read identification data by means of the
ECU object‟s GetIdentificationData() method. See chapter 6.2.1 how to receive
an ECU object. The result of an invocation of the GetIdentificationData()
method is an StringNamedCollection object. This is an ordinary dictionary or map
data type that holds key value pairs. These data types provide functions to access the
contained data. For example GetByName() is an accessor method that takes the name
of an (existing) key and returns the corresponding value.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

105

6.2.5 READING MEASUREMENT DATA

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetMeasureData (signals) : BaseValueNamedCollection

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

reads the measured data
from the given ECU

Figure 75 Reading measurement data

The Diagnostic Port API also allows reading measured values. The respective method is
located in the ECU class. In order to read a bunch of measured values the client has to
invoke the ECU class‟s GetMeasureData() method. This method takes an array of
measure value names and returns a BaseValueNamedCollection object that
contains the measured values.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

106 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.2.6 EXECUTING MACROS
H

IL
 U

s
e
r

:D
ia

g
P

o
rt

:E
C

U

D
ia

g
P

o
rt

()

C
o
n
fi
g
u
re

 (
p
ro

je
c
t,
 v

e
h

ic
le

In
fo

T
a
b

le
)

G
e

tE
C

U
 (

e
c
u
Id

,
lo

g
ic

a
lL

in
k
N

a
m

e
)

A
d

d
 (

o
p

e
ra

ti
o

n
)

M
a

c
ro

()
:M

a
c
ro

S
e

rv
ic

e
C

a
ll(

)
S

e
rv

ic
e

C
a

ll_
1

:S
e
rv

ic
e

C
a

ll

W
a

it
C

o
m

m
a
n
d
()

:W
a
it

C
o

m
m

a
n

d
A

d
d
 (

o
p

e
ra

ti
o

n
)

S
e

rv
ic

e
C

a
ll(

)
S

e
rv

ic
e
C

a
ll_

2
:S

e
rv

ic
e
C

a
ll

S
e

rv
ic

e
C

a
ll(

)
S

e
rv

ic
e
C

a
ll_

3
:S

e
rv

ic
e
C

a
ll

E
x
e
c
u
te

M
a

c
ro

 (
m

a
c
ro

)

L
o

o
p

C
o

m
m

a
n

d
()

A
d

d
 (

o
p

e
ra

ti
o

n
)

:L
o

o
p

C
o

m
m

a
n

d

c
re

a
te

 n
e
w

 D
ia

g
P

o
rt

re
m

a
rk

:
c
o

m
m

u
n

ic
a

ti
o

n
 m

o
d

e
 i
s

e
A

U
T

O
M

A
T

IC
 b

y
 d

e
fa

u
lt

c
o

n
fi
g
u

re
 t

h
is

 P
o
rt

 w
it
h

p
ro

je
c
t

d
a

ta
 a

n
d
 v

e
h

ic
le

in

fo
 t
a

b
le

c
re

a
te

 a
n
 E

C
U

 o
b
je

c
t

w
it
h
 e

c
u

ID
 a

n
d
 t

h
e

 n
a
m

e

o
f

L
o

g
ic

a
lL

in
k

c
re

a
te

 n
e
w

 m
a
c
ro

a
d

d
 t

h
e

 W
a

it
C

o
m

m
a

n
d

 t
o

th

e
 M

a
c
ro

c
re

a
te

 a
 L

o
o

p
C

o
m

m
a

n
d

a
n

d
 a

d
d
 t

h
e

 l
a
s
t
2

S

e
rv

ic
e

C
o

m
m

a
n

d
s
 t

o

th
is

 v
ia

 C
o

n
s
tr

u
c
to

r

c
re

a
te

 a
 n

e
w

S

e
rv

ic
e

C
a

ll

a
d

d
 t

h
e

 S
e
rv

ic
e

C
a

ll
to

th

e
 M

a
c
ro

c
re

a
te

 a

W
a

it
C

o
m

m
a

n
d

c
re

a
te

 2
 a

d
d

it
io

n
a

l
S

e
rv

ic
e

C
o

m
m

a
n

d
s

a
d

d
 t

h
e

 L
o
o

p
C

o
m

m
a

n
d

a
s
 3

rd
 C

o
m

m
a
n

d
 t
o

 t
h

e

M
a
c
ro

e
x
e
c
u
te

 t
h

e
 m

a
c
ro

Figure 76 Executing macros

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

107

The Diagnostic Port also allows for the execution of macro commands. Macro commands
are compositions of service calls, wait commands and loop commands. Figure 76 outlines
the execution of a macro that executes a service calls, a wait command and a loop of
service calls. Before being able to call the ExecuteMacro() method of the ECU class
the client has to receive an ECU object from the Diagnostic Port. See chapter 6.2.1 how to
receive an ECU object. Also the client has to build the macro by creating the appropriate
objects for service calls, wait commands and loop commands. Therefore the
corresponding classes have to provide constructors to create instance objects. Then, the
macro is constructed by adding these objects to macro or loop objects with the Add()
method as depicted in Figure 76. The ExecuteMacro() method has to validate the
given macro object structure. The ExecuteMacro() method will throw an exception if
the given macro is not valid.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

108 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.2.7 READING AND WRITING VALUES FROM AND TO THE EEPROM BY ALIAS NAMES

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

WriteValueByName (alias, value)

ReadValueByName (alias) : A_BYTEFIELD

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

writes data via an alias
name into the RAM

verifies the data

Figure 77 Reading and writing values from and to the EEPROM by an alias name

The client of the Diagnostic Port API can read and write data from and to the ECU‟s
EEPROM by using symbolic (alias) names for the EEPROM address. The diagnostic tool
is responsible for resolving the symbolic name to a specific address value. The
corresponding methods are located in the ECU class of the Diagnostic Port API. The
method for writing is named WriteValueByName() and the method for reading is
named ReadValueByName(). Both methods take an alias name for the address as
parameter. The diagnostic tool has to know how to map this alias name to a regular
EEPROM address. Figure 77 depicts the steps needed to read and write from and to the
ECU‟s EEPROM by an alias name.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

109

6.2.8 READING FROM THE EEPROM

HIL User

:ECU
:ECUBase
Controller

ReadFromAddress (address, numberOfBytes) : A_UINT64

GetECUbaseController() : ECUBaseController

Figure 78 Reading from the EEPROM

Reading data from an address in the EEPROM of the ECU is performed by using the
ECUBaseController. A ECUBaseController object can be received from the ECU
object by invoking its GetECUBaseController() method. See chapter 6.2.1 how to
obtain an ECU object. With the ECUBaseController‟s ReadFromAddress() method
the client can read a bunch of bytes from the ECU‟s EEPROM. The
ReadFromAddress() takes two parameters: one for the address in the EEPROM and
one for the number of bytes to read.

6.2.9 WRITING TO THE EEPROM

HIL User

:ECU

:ECUBase
Controller

WriteToAddress (address, data)

GetECUbaseController() : ECUBaseController

Figure 79 Writing to the EEPROM

Writing data to an address in the EEPROM is performed by using the ECUBaseController.
A client receives an ECUBaseController object by invoking the ECU object‟s
GetECUBaseController() method. See chapter 6.2.1 how to obtain an ECU object.
The ECUBaseController‟s WriteToAddress() method writes the data specified with
the data parameter to the EEPROM at the address specified with the address parameter.

Diagnostic Port

110 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.2.10 IMPLICIT AND EXPLICIT COMMUNICATION

The chapters above did all use the automatic (implicit) communication mode. In this case
the client of the Diagnostic Port must not take care of creating and destroying
communication channels in order to communicate with the ECU. In automatic
communication mode it‟s up to the diagnostic tool–i.e. the HiL API Diagnostic Port server–
to handle this task. The automatic communication mode is the default communication
mode.
But there may also be use cases when a more sophisticated control over the
communication is needed. That is why there is the explicit communication mode which is
explained in the following chapter. In explicit communication mode the client is
responsible for starting the communication with the StartCommunication() method
before methods that need to communicate with the ECU can be invoked, e.g.
SendHexService(). Also the client is responsible for stopping the communication with
the StopCommunication() method after the mentioned method has been called.

6.2.11 SENDING HEX SERVICES WITH EXPLICIT COMMUNICATION

HIL User

:DiagPort

:ECU

Configure (project, vehicleInfoTable)

setCommunicationMode (eEXPLICIT)

GetECU (ecuId, logicalLinkName) : ECU

SendhexService (serviceId, pdu) : A_UINT64[]

:ECUBase
Controller

GetECUBaseController() : ECUBaseController

StartCommunication()

StopCommunication()

Figure 80 Sending HEX service with explicit communication

This chapter illustrates the usage of the explicit communication mode. In explicit
communication mode the client has to start and stop the communication with the ECU
explicitly. After the project is configured the client receives the ECU object by invoking the

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

111

GetECU() method. Then the communication mode is set to explicit communication
mode (eEXPLICIT) with the ECU class‟s SetCommunicationMode() method.
Before calling an method that communicates with the ECU–e.g. the
SendHexService() method–the StartCommunication() method of the ECU
class has to be called. Finally the StopCommunication() method has to be called in
order to stop the communication with the ECU. Figure 80 shows the steps needed to send
an HEX service with explicit communication.
Since the Diagnostic Port only defines the two mentioned communication modes as state
that can be changed via the SetCommunicationMode() method no state diagrams
are provided here.

6.2.12 EXECUTING JOBS

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

ExecuteJob (jobName, parameter) : AnyObjectNamedCollection

IntVectorValue (value) :AnyObject
NamedCollection

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

execute the job

create 1...n
parameter for the
Job

examine the response
parameter

Figure 81 Executing a job

The Diagnostic Port API provides methods for the execution of diagnostic jobs. Figure 81
shows the steps needed to execute a diagnostic job. After configuration of the Diagnostic
Port and receiving of the ECU object, the client creates the job parameters and invokes
the ExecuteJob() method of the ECU class.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

112 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.2.13 READING MEASUREMENT DATA FROM A FUNCTIONAL GROUP

HIL User

:DiagPort

:Functional
Group

DiagPort()

Configure (project, vehicleInfoTable)

GetFunctionalGroup (functionalGroupId, logicalLinkName) : FunctionalGroup

GetMeasureData (signals) : FunctionalGroupDataCollection

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create a FunctionalGroup
object with
FunctionalGroupID and
the name of LogicalLink

reads the measured data
from the given functional
group

Figure 82 Reading measurement data from a functional group

Since the Diagnostic Port API supports functional groups, the client can read
measurement data from a functional group, i.e. from a group of ECUs. Figure 82 depicts
the steps needed to perform this task. After configuration of the DiagPort object and
receiving of the FunctionalGroup object, the client invokes the Functional Group
object‟s GetMeasurementData() method with the desired signal names as
parameter.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

113

6.2.14 USING THE BASECONTROLLER

HIL User

:DiagPort

:ECU

DiagPort()

Configure (project, vehicleInfoTable)

GetECU (ecuId, logicalLinkName)

GetECUBaseController() : ECUBaseController

:ECUBase
Controller

WriteToAdress (address, data)

ReadFromAddress (address, numberOfBytes) : A_BYTEFIELD

create new DiagPort
remark:
communication mode is
eAUTOMATIC by default

configure this Port with
project data and vehicle
info table

create an ECU object
with ecuID and the name
of LogicalLink

get ECUBaseController

write value to a given
address

read value from a given
address

Figure 83 Using the BaseController

The BaseController is used in cases a more sophistic access to the diagnostic tool is
needed. With the BaseController‟s methods the client is able to read and write values
directly to addresses of the ECU‟s memory. Figure 83 outlines the steps needed to read
and write a number of bytes from and to the ECU‟s memory. The client receives the
BaseController object directly from the ECU object as a return value of the
GetECUBaseController() method.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\DiagPort\DiagPortExample.cs
Python Python\SampleCode\DiagPort\DiagPortExample.py
Java JAVA\SampleCode\DiagPort\DiagPortExample.java

6.3 SPECIAL HINTS

6.3.1 STRUCTURE OF RETURNED COLLECTIONS

The structures of the return collections of methods of the Diagnostic Port‟s classes
depend on the ECU that is connected to the diagnostic tool. Therefore the Diagnostic Port
API does not specify any return structures.

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/DiagPort/DiagPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/DiagPort/DiagPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/DiagPort/DiagPortExample.java

Diagnostic Port

114 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

6.3.2 STATES IN THE DIAGNOSTIC TOOL

There are no restrictions on the invocation of methods that affect the communication
mode or the communication status respectively.

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

115

7 EES PORT

7.1 USER CONCEPT

7.1.1 GENERAL

7.1.1.1 ELECTRICAL ERROR SIMULATION ON THE HIL SYSTEM

The pins of the system under test (SUT) are connected to the HIL system that provides
power supply lines, communication busses like CAN, and simulated sensors and
actuators. But test cases may not only comprise checking the behavior of the SUT in a
fully functional environment. It is also important to check the SUT in case of electrical
errors on the input and output pins. The question is: How does the SUT behave if the
sensors and actuators are not working correctly or if they are not connected correctly?

Typical errors that have to be tested are electrical problems, mainly caused by wiring. To
generate this class of errors the connections between the SUT and its environment
(sensors, actuators, power supply, busses) have to be disturbed by an appropriate
hardware system. This is the task of the so-called electrical error simulator (EES, see
Figure 84).

HIL Tester

System
under
Test

Sensor
Simulation
(Stimulation)

Actuator
Simulation
(Measurement)

Control Control

EESEES

Inputs Outputs

Figure 84 Electrical Error Simulation is used to disturb the signals between the HIL
system and the SUT

The electrical error simulator creates typical wiring errors like loose contacts, broken
cables, short-circuits to neighboring pins, to ground (chassis) or to battery voltage. EES is
provided by a special hardware in the HIL tester. But EES has not to be a separate
component in general. It may be also integrated in a comprehensive HIL hardware.

EES Port

116 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

The EES hardware is controlled by the test cases during the test, not by the real-time
model. The HIL API EES port provides a general API for electrical error simulation
hardware. The API hides the specific API of the used hardware, its driver software, and
the communication between the machine the test is running on and the EES hardware.
The EES port provides a defined set of functionality in an abstract manner. It is designed
from the test case writer‟s point of view. Thus, the test case writer deals with some
abstract error functionality. It is not necessary to know the technical details of the EES
hardware.

7.1.1.2 FUNCTIONAL PRINCIPLE OF THE EES PORT

The general functional principle of the EES port is: A sequence of errors is defined using
the HIL API by the test script. This is called the error configuration and may be stored in
an XML file. The error configuration is downloaded to the specific EES hardware or
software. The execution of the error sequence is completely transparent for the EES port
user. It is done by the vendor-specific hardware, software, or driver.

Error Configuration

Error

Error

Error

Error Set

Error

Error

Error

Error Set

Error

Error

Error

Error Set

Save error
configuration

Load error
configuration

Download config to EES HW

EES port implementation

EES software/driver

EES hardware

Create configuration
using API commands

Error Configuration

Error

Error

Error

Error Set

Error

Error

Error

Error Set

Error

Error

Error

Error Set

Error
Configuration
File

P
ro

p
ri
e

ta
ry

 /
 E

E
S

 H
W

 s
p

e
c
if
ic

H
IL

 A
P

I
E

E
S

 P
o
rt

 S
ta

n
d

a
rd

 A
P

I

Figure 85 Error configurations are defined by EES ports and downloaded for
execution to the vendor-specific EES hardware respective software

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

117

HIL API EES port mainly deals with the configuration of errors and starting a formerly
configured error sequence by downloading (see Figure 85). Therefore the HIL API EES
port is independent from a concrete EES implementation.

7.1.2 CONFIGURATION AND EXECUTION OF ELECTRICAL ERRORS

7.1.2.1 ERROR CONFIGURATION

Error Configuration Config 1

Error 1

Error 3

Error Set A

Error 2

Error 3

Error 4

Error Set B

Error x

Error Set n...

tt
1

Trigger 1

t
2

Trigger 2

t
n

Trigger n

Figure 86 An error configuration comprises a sequence of error sets with several
errors

An error is a defined disturbance of one or two electrical signals, typically pins of the SUT.
E.g. an error may disturb a signal by interrupting the line and replacing it with a resistor.
More than one error for different signals may be in effect at the same time. All errors that
start at the same time are put together in an error set. An EES configuration comprises of
a sequence of error sets (see Figure 86).

EES Port

118 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.1.2.2 EXECUTION OF AN ERROR CONFIGURATION

Error Configuration

Error 1 (Sig1)

Error Set

tt
2

Trigger

Event 1

Error 2 (Sig2)

Error Set

Error 2 (Sig2)

Error 3 (Sig3)

Error Set

Error 4 (Sig1)

Error Set

Error 5 (Sig2)

Signal Sig3

Signal Sig2

Signal Sig1

t
3

Trigger

Event 2

t
4

Trigger

Event 3

t
5

Trigger

Event 4

t
6

Stop()

t
1

 Start()

no error

error 5

no error error 1 no error error 4

no error

no error error 3

error 2 no error

Figure 87 Example for the execution of an error configuration

To execute an error configuration, it has to be downloaded and started by the test case.
When an error configuration is executed, the error sets are executed in the defined
sequence (see Figure 87). That means the first error set is activated when the trigger for
the first error set becomes true. All other triggers are not considered so far. The errors in
the error set stay active as far as the trigger of the next error set becomes true.
The sequence of error sets is statically defined by the error configuration. It does not
depend on the sequence the triggers of the error sets are fired. The triggers only
determine when the next error set replaces the currently active error set.
The error configuration has to be stopped by the test case using the HIL API. The last
error set remains active as long as the error configuration is not stopped. To get a defined
end of signal disturbance, an empty error set can be used as the last error set in the
configuration. Empty error sets can also be used to create error-free phases (refer to
Figure 87 for an example).

If an error is defined in the same way in two consecutive error sets, the error will stay in
action. There is no restart of the error or any other kind of influence when one error set is
replaced by the consecutive error set containing the same error for the same signal.

7.1.2.3 DOWNLOAD OF AN ERROR CONFIGURATION

The EES error configuration has to be downloaded before it can be executed. Download
means that the configuration has to be completely passed by the EES port to the specific
EES driver, software, and hardware system. Typically the configuration will be physically
downloaded to the hardware and executed there. But in general, this is not required by the
HIL API definition. It is also possible that an error configuration is executed by the driver or
another software system on the same PC.
Therefore, the conceptual sequence to create and use an error configuration is:

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

119

1. An error configuration is created by means of the HIL API EES port (construction by
API calls or loading from a file).

2. Now the error configuration is stored on the computer the HIL API is running on and
may be changed.

3. Then the error configuration is downloaded to the EES system, a specific
software/hardware system. In any case, the error configuration cannot be changed
any longer.

4. After starting the error configuration in the test case (using HIL API), the defined
sequence of errors is executed. Execution is independent from the test case and the
HIL API.

5. When the HIL API stops the execution, all kinds of disturbance immediately stop.
Possibly the last error set of the error configuration remains active until the execution
is stopped.

A downloaded error configuration can be used several times.

7.1.3 TRIGGERS IN EES

The EES system uses trigger events to switch from one error set to another error set.
These triggers are handled by the EES hardware and software. They are not defined by
the HIL API. And there are also no means to define trigger conditions for EES error sets in
the EES port. In an EES error configuration only the type of the awaited trigger is defined.
The type of a trigger can be thought as the trigger input connection of an appropriate
hardware. But in fact, the trigger may be controlled by software also.
From EES port‟s point of view an EES system has three possible trigger inputs:

 Manual trigger: This trigger is fired by the controlling test script. The EES port
offers a method to fire this trigger.

 Hardware trigger: The hardware trigger reacts on some kind of electrical trigger
line of the EES hardware. Further details are not defined by the HIL API. It is
just expected that the EES hardware has some kind of a hardware trigger input.

 Software trigger: The software trigger reacts on a trigger signal defined in the
model or another software part of the HIL system. It is not defined by HIL API or
the EES error configuration how the EES system is associated with the software
system.

If an additional configuration of triggers is needed by the EES system, this has to be done
using the EES specific software interface. There are no means in HIL API so far to define
additional options for the triggers.

7.1.4 ELECTRICAL ERRORS

An error is defined by several independent aspects: the error category, the error type, and
the option to disturb with or without load.

EES Port

120 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.1.4.1 ERROR CATEGORY

Pin_2_Pin

Interrupt

Short-Circuit Ground

Short-Circuit UBatt

Short-Circuit Potential

HIL SUTEES

disturbance by

short-circuit

Signal 1

Signal 2

Signal
disturbance by

interruption

disturbance by

short-circuit

Signal

to ground

disturbance by

short-circuit

to U
Battery

Signal

disturbance by

short-circuit

to potential X

Signal

Figure 88 Illustration of the error categories defined by EES port

The error category defines how a signal should be disturbed. A signal is interrupted or
connected to another signal or potential (see Figure 88). The way the interruption or short-
circuit is provided is not defined by the error category (but by the error type, see chapter
7.1.4.2).
Typically the error category affects one signal. Only in case of a pin to pin error two
signals are affected.

The error short-circuit to potential is the generalized form of a short-circuit error. For this
category of errors the EES hardware has to provide additional potentials beside Ubattery
and ground. Multiple potentials identified by numbers may be supported. Ubattery and
ground are covered by separate categories because of their importance.

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

121

7.1.4.2 ERROR TYPE

Simple

Resistor

Dynamic

Loose Contact

Dynamic Resistor

Loose Contact Resistor

Short-Circuit Interruption

R

R

statically open

R

R

statically closed

R

R

statically open
statically closed

duration
duration

duration
duration

duration
PWM (dc, f)

duration
PWM (dc, f) duration

PWM (dc, f)

duration
PWM (dc, f)

Figure 89 Illustration of the error types defined by EES port

The error type defines the disturbance itself. There are several possibilities that differ in
the dynamic of the disturbance (static, for a defined duration, controlled by a PWM signal)
and the resistance in case of the error (defined resistance or completely open/closed).
The concrete circuit also differs between short-circuit errors and interrupt errors, because
in one case the error is caused by closing a connection, in the other by opening the
connection. Nevertheless, the idea of an error of the same error type is the same in both
cases.

Figure 89 shows the available error types and the principal circuits used for short-circuits
and interrupts.

EES Port

122 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.1.4.3 WITH OR WITHOUT LOAD

With Load

Without Load

HIL SUTEES

Signal
open in case of

disturbance to

protect HIL
disturbance

Signal
no protection

even in case of

disturbance
disturbance

Figure 90 Illustration of the option with load and without load

The option “with load” or “without load” is an additional aspect of an error. This aspect is
orthogonal to error category and error type and can be freely chosen for almost every kind
of error. Only interruptions do not provide this option because technically it does not make
any sense in this case.
Background: If a signal between the HIL and the SUT is disturbed by the EES hardware,
not only the SUT has to deal with the disturbance. A short-circuit for example effects the
HIL hardware, too. To protect the HIL hardware the EES can open the connection
between HIL and EES. Thus, the disturbance has an effect on the SUT but cannot
damage the HIL.

Figure 90 shows the principal circuit of the with/without load protection in the EES
hardware.

7.1.5 API

The EES port API consists of several classes to control the EES system and to create,
store, load, and represent error configurations. In the following chapters the most
important classes of the EES port and the relations between them are described.

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

123

7.1.5.1 EES PORT

class _doc_main_EESPort

Port::Port

EESPort

ErrorConfiguration

0..1

0..1

Figure 91 The main EES port classes

The EES port itself is represented by the class EESPort. This class is derived from the
general HIL API Port class. EESPort provides methods to download an error
configuration, to start and stop the execution of a downloaded error configuration on the
EES system, and to trigger the EES system manually. This is the way a trigger of type
“MANUAL” is fired.
To synchronize the test run of the test script with the execution of the error configuration,
the synchronous method WaitForTrigger can be used. This method waits until the
next trigger event defined in the error configuration. Alternatively the method returns with
an error when the timeout time is reached.

An error configuration can be created using the constructor of the class
ErrorConfiguration. It is possible to create several error configurations. But only
one error configuration can be assigned to the EESPort instance. The assignment
overrides an older assignment. Assigned error configurations can be changed. But after
downloading the error configuration to the EES system no further changes are
considered. Nevertheless, the error configuration may be downloaded again.

EES Port

124 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.1.5.2 ERROR CONFIGURATION

class _doc_ErrorConfiguration

ErrorConfiguration

ErrorSe t

ErrorObjects::SimpleError

ErrorObjects::ResistorError

ErrorObjects::DynamicError

ErrorObjects::DynamicResistorError

ErrorObjects::LooseContactError

ErrorObjects::LooseContactResistorError

1

0..*

contains

0..*

0..*

0..*

0..*

0..*

0..*

Figure 92 Classes used to represent an error configuration

According to the structure of an error configuration there exists one class for the error
configuration itself (ErrorConfiguration), one for the error sets (ErrorSet), and
several classes for errors of the different error types (SimpleError, …).
Only the error configuration class can be instantiated by the constructor. All other classes
are constructed using the factory method respective the error factory class of the error
configuration object. Therefore error sets and error objects exist only in the context of an
error configuration and will be destroyed automatically when the error configuration is
destroyed by the user (using the destructor of ErrorConfiguration).
Errors (SimpleError, …) are created using the factory provided by the error
configuration instance and then assigned to one or more error sets. It is not allowed to
assign an error to another error configuration.

Properties of error objects and error sets (like name) cannot be changed after creation.
These properties are set at creation by the factory class. In this sense, these objects are
read-only.

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

125

7.1.5.3 ERROR OBJECTS

class _doc_ErrorObje...

BaseError

{abstract }

SimpleError DynamicError

ResistorError LooseContactError DynamicResistorError

LooseContactResistorError

Figure 93 Class hierarchy of error objects

The six error classes represent the six error types. Other differentiation characteristics of
errors like error category and option with/without load are stored as attributes in these
classes.

The error classes are hierarchically organized with a common base class. The base class
BaseError is abstract and cannot be instantiated. Attributes and variables of this type
store an instance of an arbitrary error.

EES Port

126 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.1.5.4 CREATION OF ERROR OBJECTS

class Creation of Errors

EESPort::ErrorConfiguration EESPort::ErrorFactory

ErrorFactory::SpecificErrorFactory

ErrorBuilder::BaseErrorBuilder

ErrorBuilder::SimpleErrorBuilder ErrorBuilder::DynamicErrorBuilderErrorBuilder::ResistorErrorBuilder

providesprovides

provides

provides

Figure 94 Classes used to create error objects

Factory and builder classes are used to create a specific error object. The result of the
builder is an instance of one error class (see chapter 7.1.5.3).
In principle, error objects are created by the following sequence:

1. Fetch factory ErrorFactory from error configuration. Use the error configuration
the new error should belong to.

2. Choose the error category and define the affected signal or signals. For each signal
the option with or without load is defined, too. The ErrorFactory will return a
SpecificErrorFactory.

3. Choose whether you want to create a simple or a dynamic error. This is one aspect of
the error type. The SpecificErrorFactory will return an object of class
SimpleErrorBuilder or class DynamicErrorBuilder.

4. Configure now the error type using the error builder object. Possibly the error builder
returns another error builder so that the building process may comprise several levels.

5. The method ToBaseError() returns the configured error object.
ToBaseError() is available in all error builder classes.

Factories and builder objects cannot be created or destroyed by the user. They must be
fetched again from the according father object each time a new error should be created.

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

127

This multi-level structure of factory/builder objects is designed to be used in a one line
statement to create an error object with all its characteristics. The example code
demonstrates how this works in the supported programming languages.

7.1.5.5 READER AND WRITER FOR EES CONFIGURATION FILES

class _doc_DocumentHandling EESPort

EESConfigurationReader

{abstract }

EESConfigurationFileReade r EESConfigurationFileW riter

EESConfigurationWriter

{abstract }

DocumentHandling::DocumentManager

{abstract }

Figure 95 Reader and writer classes for error configuration files

Error configurations can be externally stored, normally in files. To allow different storage
types and formats, reading and writing is handled by abstract reader and writer classes.
For the EES error configuration these are the abstract classes
EESConfigurationReader and EESConfigurationWriter. Both classes are
derived from the common HIL API document handler class DocumentManager.

HIL API supports an XML format to store complete error configuration in a file. The
schema definition of this XML file is part of the HIL API standard (EESConfiguration.xsd).
The specific reader and writer classes are EESConfigurationFileReader and
EESConfigurationFileWriter.

EES Port

128 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.1.6 EES PORT STATES

stm EES StateDiagram

eCONFIGURED

eACTIVATED eSTARTED

EESPort::setConfiguration()

EESPort::GetActiveErrorSet()

EESPort::Download()

EESPort::EESPort()

EESPort::Start()

Configuration::Clear

start trigger becomes true

EESPort::WaitForTrigger()

EESPort::GetActivatedErrorSet

EESPort::Trigger()

EESPort::Stop()

EESPort:.Trigger()

EESPort::WaitForTrigger()

EESPort::GetActivatedErrorSet()

EESPort::Stop()

Figure 96 State diagram for EES port

The EES port has three states:

 eCONFIGURED:
The base state of the EES port. In this state it is possible to configure the
port and assign an error configuration.

 eACTIVATED:
An error configuration is downloaded to the EES system and started. The
EES system waits for the first defined trigger event to execute the first error
set in the error configuration. This may be also a manual trigger, fired by
using the method Trigger of the EES port object.

 eSTARTED:
An error set is active. The EES system waits for the next defined trigger
event to switch to the next error set.

The execution of an error configuration is divided into two states because the sequence of
error sets does not start before the first trigger fires. From the user‟s point of view there is
no difference between those two states. He can fire manual triggers, stop the execution of
the error configuration, wait for the next trigger to synchronize the execution of the test
script, or query the currently active error set.

Configuration of the EES port is not possible, not necessary, and not reasonable during
execution of an error configuration. Therefore configuration is only possible in the
configured state.

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

129

7.2 USAGE OF THIS PORT

7.2.1 CREATING ERROR CONFIGURATIONS BY API

HIL User

:EESPort

:Error
Configuration

EESPort()

ErrorConfiguration()

GetErrorFactory() : ErrorFactory

:Error
Factory

create an EESPort

1) build an error for short
circuit to battery voltage
with an in-line resistor of
80 Ohm
see SEQ 01_1_EES

CreateErrorToUbatt (signal, load) : SpecificErrorFactory

CreateErrorToUbatt (signal, load) : SpecificErrorFactory

CreateErrorToPotential (potentialType, signal, load) : SpecificErrorFactory

CreateInterruptError (signal) : SpecificErrorFactory

CreateErrorPin2Pin(signal1, signal2, load1, load2) : SpecificErrorFactory

create an error
configuration

use a factory to build
the errors

2) build an error for short
circuit loose contact to
battery voltage
see SEQ 01_2_EES

3) build an error for short
circuit to a selected
potential
see SEQ 01_3_EES

4) build an error for line
interruption
see SEQ 01_4_EES

5) build a low resistance
error between two
pins/lines
see SEQ 01_5_EES

Figure 97 Sequence of example “create error configuration by API” (part1)

EES Port

130 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HIL User
:EESPort

:Error
Configuration

Add (errorSets)

:Error
Factory

Add (error)

myErrorSet_1
:ErrorSet

CreateErrorSet (name, triggerType) : ErrorSet

myErrorSet_2
:ErrorSet

CreateErrorSet (name, triggerType) : ErrorSet

Add (error)

setConfiguration (configuration)

Download()

Start()

Trigger()

create an error set and
add the errors
“simpleShortCircuitErrorT
oUbatt” (SEQ 01_1) and
“line interruption” (SEQ
01_04). The error set
should be performed by
an manual trigger

create an error set and
add the error
“looseContactErrorShortC
ircuitErrorToUbatt” (SEQ
01_2). The error set
should be performed by
an hardware trigger

add the error set
“myErrorSet_1” and the
error set “myErrorSet_2”
to the EES configuration

assign the created
configuration to EESPort

before the configuration
can be executed on the
EES system it has to be
download to the EES
system

after a download of a
configuration the EES
system has to be armed

after the instruction start,
the configuration can be
performed only by a
trigger. The created
configuration includes
errors set using a manual
trigger, therefore the
trigger command has to
be performed

Add (error)

Save (writer)save the EES
configuration to file

WaitForTrigger(timeout)wait for hardware
trigger

if the EES system is
not longer required,
the system shall be set
into an idle mode. to
do that, use the
command stop.

Stop()

do something

Figure 98 Sequence of example “create error configuration by API” (part2)

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

131

The example shows how an error configuration is created. First a new error configuration
is created. This is independent from the EES port instance. In a second step, a specific
error is created using the factory and builder objects of the configuration (see Figure 97

and also Figure 99 till Figure 103). In the third step, a new error set is requested from the

error configuration and the error is assigned to this error set. The error configuration is
assigned to the EES port instance and stored in a file.

The created error configuration is executed in the lower part of the sequence. This is
straight forward: the error configuration is assigned to the EES port, it is downloaded, and
started. Then a manual trigger is fired and the next trigger is awaited (a hardware trigger
as defined in the second error set). At the end, the execution of the error set is stopped.

The sample code for this and the following examples will be found at

C# C#/SampleCode/EESPort/EESPortExample.cs
Python Python/SampleCode/EESPort/EESPortExample.py
Java JAVA/SampleCode/EESPort/EESPortExample.java

7.2.2 CREATING ERROR OBJECTS

The error objects stored in the error configuration are created using the error factory and
error builder classes. The following five sequence diagrams show how to create the
different errors.

HIL User

:Error
Factory

:Simple
Error

Builder

CreateErrorToUbatt
(signal, load) : SpecificErrorFactory

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build your
required error
by use of the
factory
“errorFactory”

build an error for
short circuit to
battery voltage
with an in-line
resistor of 80 Ohm

WithResistor (resistor) : BaseErrorBuilder

:BaseError
Builder

ToBaseError() : BaseError

simpleShortCircuit
ErrorToUbatt
:SimpleError

Figure 99 Sequence to create a short-circuit to Ubattery error object

Technology_Reference_Interfaces/C%23/SampleCode/EESPort/EESPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/EESPort/EESPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/EESPort/EESPortExample.java

EES Port

132 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

b
u
ild

 a
n
 e

rr
o
r

fo
r

s
h

o
rt

 c
ir
c
u

it

lo
o

s
e

 c
o
n

ta
c
t

to
 b

a
tt

e
ry

v
o
lt
a
g
e

 w
it
h
 f

o
llo

w
in

g

c
h
a
ra

c
te

ri
s
ti
c
s
:

-
D

u
ra

ti
o
n
:
=

 1
0
0
0

0
m

s
 =

>
 1

0
s

-
F

re
q
u
e

n
c
y
:

1
0
0
H

z

D
u
ty

C
y
c
le

 5
0
%

 I
n
-L

in
e
 t
o

B

a
tt
e

ry
 v

o
lt
a
g
e
 o

f
1
0
0
 O

h
m

H
IL

 U
s
e

r

:E
rr

o
r

F
a

c
to

ry

:D
y
n
a
m

ic
E

rr
o
r

B
u
ild

e
r

C
re

a
te

E
rr

o
rT

o
U

b
a
tt

(s

ig
n

a
l,
 l
o

a
d
)

:
S

p
e
c
if
ic

E
rr

o
rF

a
c
to

ry

A
s
D

y
n
a

m
ic

(d
u
ra

ti
o

n
)

:
D

y
n
a

m
ic

E
rr

o
rB

u
ild

e
r

:S
p
e
c
if
ic

E
rr

o
r

F
a
c
to

ry

W
it
h

F
re

q
u

e
n
c
y
(f

re
q
u
e

n
c
y,

 d
u
ty

C
y
c
le

)
:
R

e
s
is

to
rE

rr
o

rB
u

ild
e
r

:R
e

s
is

to
rE

rr
o
r

B
u
ild

e
r

T
o
B

a
s
e
E

rr
o
r(

)
:
B

a
s
e

E
rr

o
r

lo
o

s
e

C
o
n
ta

c
tE

rr
o
r

S
h
o
rt

C
ir
c
u
it

E
rr

o
rT

o
U

b
a
tt

:L
o
o
s
e
C

o
n
ta

c
tE

rr
o

r

W
it
h

R
e
s
is

to
r

(r
e
s
is

to
r)

 :
 B

a
s
e
E

rr
o

rB
u

ild
e
r

:B
a
s
e
E

rr
o
r

B
u
ild

e
r

Figure 100 Sequence to create a loose contact error object

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

133

HIL User

:Error
Factory

:Simple
Error

Builder

CreateErrorToPotential
(potentialType, signal, load) : SpecificErrorFactory

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build an error for short
circuit to a selected
potential “5”

ToBaseError() : BaseError

errorShortCircuit
ErrorToPotential

:SimpleError

Figure 101 Sequence to create a short-circuit error object

HIL User

:Error
Factory

:Simple
Error

Builder

CreateInterruptError(signal) : SpecificErrorFactory

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build an error for
line interrupt

ToBaseError() : BaseError

lineInterruptionError
:SimpleError

Figure 102 Sequence to create a line interruption error object

EES Port

134 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

CreateErrorPin2Pin (signal1, signal2,
load1, load2) : SpecificErrorFactory

HIL User

:Error
Factory

:Simple
Error

Builder

AsSimple() : SimpleErrorBuilder

:Specific
Error

Factory

build a low
resistance error
between two
pins/lines

WithResistor (resistor) : BaseErrorBuilder

:BaseError
Builder

ToBaseError() : BaseError

pinToPinError
:SimpleError

Figure 103 Sequence to create a pin-to-pin error object

These error creation sequences are part of the creation of an error configuration as shown
in chapter 7.2.1.

The sample code for this example will be found at

C# C#/SampleCode/EESPort/EESPortExample.cs
Python Python/SampleCode/EESPort/EESPortExample.py
Java JAVA/SampleCode/EESPort/EESPortExample.java

Technology_Reference_Interfaces/C%23/SampleCode/EESPort/EESPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/EESPort/EESPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/EESPort/EESPortExample.java

EES Port

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

135

7.2.3 LOADING ERROR CONFIGURATIONS FROM FILE

HIL User

:Error
Configuration

:EES
Configuration
FileReader

ErrorConfiguration (configuration_name)

EESConfigurationfileReader (fileName)

Load (configuration)

create an error
configuration

load an existing EES
error configuration

Figure 104 Sequence of example “load error configuration from file”

In this sequence the error configuration is loaded from a file. The sequence shows how
this is done using the error configuration file reader object. Other parts of usage,
especially assignment of the error configuration to the EES port, downloading, starting,
and stopping the configuration is independent from the creation. Therefore it is in principle
the same as in the example above (see chapter 7.2.1).

The sample code for this example will be found at

C# C#/SampleCode/EESPort/EESPortExample.cs
Python Python/SampleCode/EESPort/EESPortExample.py
Java JAVA/SampleCode/EESPort/EESPortExample.java

Technology_Reference_Interfaces/C%23/SampleCode/EESPort/EESPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/EESPort/EESPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/EESPort/EESPortExample.java

EES Port

136 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

7.3 SPECIAL HINTS

7.3.1 EES HARDWARE LIMITATIONS AND EXTENSIONS

The EES port handles the EES hardware in an abstract manner. Therefore it is limited to a
defined set of functionality. Possibly the hardware supports additional functions that are
not supported by the HIL API EES port. These functions are not accessible with means of
HIL API. Additional functionality may be used within a test case using additional APIs of
the EES implementation. But strict compatibility to HIL API is lost for test cases that make
use of such extended functionality, of course.
On the other hand, a specific EES hardware may lack some functionality that is defined by
the HIL API. This is also a valid use case. The EES hardware respective port
implementation is still HIL API compliant. In this case, the EES port returns an error when
not implemented functions are used. HIL API compatible test cases can be executed but
return an error due to lack of functionality of the underneath hardware ECU Port.

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

137

8 ECU ACCESS

8.1 USER CONCEPT

The ECU access part of the HIL API accesses an ECU via an MC system. It provides the
following functionality:

 Measurement and capturing

 Calibration

 Management of ECU memory pages

The HIL API only communicates with the MC system, it does not communicate directly
with the ECU. It is the task of the MC system to handle the communication with the ECU
and to execute the methods defined by the HIL API. Therefore the HIL API does not need
any knowledge about the interface being used for communication with the ECU (e.g. a
CAN interface or a KWP2000 interface), and consequently this does not influence the
code accessing the HIL API. Figure 105 illustrates this:

ECU

C

Cali-
bration

M

Measure

MC-server

HIL API

Figure 105 Accessing ECUs via the HIL API

The access to ECUs via the HIL API is done by two separate ECU access ports. Both
ports are derived from the class Port (see Figure 106). These ports are:

ECUMPort The ECUMPort class provides functionality for accessing
measurement variables of an ECU. It also provides capturing
functionality.

ECUCPort The ECUCPort class provides functionality for reading and writing
parameters of an ECU. It can also handle memory pages of an
ECU.

ECU Access

138 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

class ECUPort

Port::Port

ECUMPort

+ ECUMPort()

+ getState() : ECUPortState

+ getTaskNames() : A_UNICODE2STRING[]

+ getVariableNames() : A_UNICODE2STRING[]

+ isReadable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ CreateCapture(task :A_UNICODE2STRING) : Capture

+ Read(variableName :A_UNICODE2STRING) : BaseValue

+ Start()

+ Stop()

ECUCPort

+ ECUCPort()

+ getState() : ECUPortState

+ getVariableNames() : A_UNICODE2STRING[]

+ isReadable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ isWriteable(variableName :A_UNICODE2STRING) : A_BOOLEAN

+ CalculateRefPageCRC() : A_UINT64

+ CalculateWorkPageCRC() : A_UINT64

+ GetDataType(variableName :A_UNICODE2STRING) : DataType

+ NumberOfPages() : A_UINT64

+ Read(variableName :A_UNICODE2STRING) : BaseValue

+ Start(loadingType :LoadingType)

+ Stop()

+ SwitchToRefPage()

+ SwitchToWorkPage()

+ Write(variableName :A_UNICODE2STRING, value :BaseValue)

Figure 106 The ECU port classes

Both ports use the same state machine. The next chapters describe both ports and the
state machines in more detail.

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

139

8.2 ECUCPORT

The ECUCPort class provides functionality for reading and writing parameters of an
ECU. It can also handle memory pages.

8.2.1 STATES OF THE ECUCPORT

Figure 107 illustrates the state diagram of the ECUCPort.
There are two states, eOFFLINE and eONLINE. After creation, the ECUCPort instance
is always in state eOFFLINE. The following table explains the states:

eOFFLINE There is no connection to the ECU.

Reading parameter values returns the values currently being stored
in the server only, not coming from the ECU.

Writing parameter values changes the values currently being stored
on the server only and is not writing values to the ECU.

eONLINE A connection to the ECU has been established.

Reading parameter values returns the current values from the ECU.

Writing parameter values changes the current values on the ECU.

The Start(eLoadingType) method switches from the eOFFLINE state to the
eONLINE state (see also chapter 8.2.4 for details). The Stop() method switches from
eONLINE state back to the eOFFLINE state.

ECU Access

140 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

stm ECUCPort States

eOFFLINE

eONLINE

ECUCPort::Start(LoadingType)

ECUCPort::Read(A_UNICODE2STRING)

ECUCPort::Stop()

ECUCPort::Stop()

ECUCPort::Read()

ECUCPort::Start(LoadingType)

ECUPort::ECUCPort()

Figure 107 States of the ECU C port

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

141

8.2.2 ACCESSING ECU PARAMETERS

The ECUCPort allows reading and writing of parameter values of the ECU. If a
parameter value is readable can be determined by using the isReadable function. If a
parameter also can be modified can be determined using the isWritable function.

The following example shows how to read and write a scalar float ECU parameter value
(see Figure 108).

First the connection to the ECU is set up using the Start() method. The value of the
LoadingType parameter is not important for this example, any value can be used. Then
the data type of the variable is fetched using the GetDataType() method. The
following assumes that the chosen parameter value is readable and writable.

Then the new parameter value is written to the ECU. After writing, the current value of the
parameter on the ECU is read back in order to check if it is the same value as the one
which has been written. After that the connection to the ECU is stopped and the
ECUCPort goes offline.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ ECUCPortExample.cs
Python Python\SampleCode\ECUPort\ ECUCPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUCPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/%20ECUCPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUCPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUCPortExample.java

ECU Access

142 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HIL User

:ECUCPort

:FloatValue

ECUCPort()

Start (loadingType)

GetDataType (variableName) : DataType

Write (variableName, value)

isWriteable (variableName) : A_BOOLEAN

isReadable () : A_BOOLEANvariableName

Read () : BaseValuevariableName

getAttributes() : Attributes

getValue() : A_FLOAT64

create new ECU C
port

initiate a download of the
working and reference
pages to the ECU for
initialization (transition to
eONLINE)

try to set a defined value

read calibration value
and its attributes

Stop()
return to eOFFLINE

FloatValue (value)

Figure 108 Read and write a scalar float ECU parameter

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

143

8.2.3 GETTING THE LIST OF VARIABLES OF THE ECUCPORT

This example describes how a user can get the names of all parameters supported by this
ECUCPort instance. A call of the getVariableNames() method returns a list of all
parameter names.

HIL User

:ECUCPort
ECUCPort()

getVariableNames() : A_UNICODE2STRING[]

create new ECU C
port

initiate a download of the
variables

Figure 109 Get the list of parameters of an ECUCPort instance

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ ECUCPortExample.cs
Python Python\SampleCode\ECUPort\ ECUCPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUCPortExample.java

8.2.4 MANAGE ECU MEMORY PAGES

Another block of functionality of the ECUCPort is the management of ECU memory
pages.
Most MC tools support the handling of several memory pages. Each of these memory
pages is able hold all parameter values of the ECU. Two of the most popular memory
pages are the working page and a read-only reference page. The following list gives a
short overview of the memory page management functions of the ECUCPort:

 The NumberOfPages() method returns the number of pages which the current
MC system supports. Most MC systems support 2 memory pages, a reference and
a working page.

 If more than 1 memory page is supported by the MC system, the
SwitchToRefPage()method allows to switch from the working page to the
reference page, and the SwitchToWorkPage()method allows to switch from
the reference page to the working page.

 To check if the contents of two memory pages are equal, the
CalculateRefPageCRC() and CalculateWorkPageCRC() methods
can be used.

 In order to set up a connection with the ECU, the Start() method must be used.
The LoadingType parameter defines if the content of the current memory page
is downloaded to the ECU (eDOWNLOAD) or if the content of the actual page is
filled with the data coming from the ECU memory (eUPLOAD).

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/%20ECUCPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUCPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUCPortExample.java

ECU Access

144 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Setting a variable value with the Write method in state eOFFLINE sets the value on the
actual page. This value can be written to ECU with the Start(eDOWNLOAD) method.
Setting the value of the same variable in state eONLINE changes the value on the ECU
directly.

The following example shows how to handle memory pages.

After creation of the ECUCPort the transition to eONLINE is performed. Then the
number of pages is fetched. In this case a value of 2 is expected, to make sure that a
working and a reference page exist. Then the reference page is made the current memory
page and the checksum is calculated. Then a parameter value from the ECU is read. After
a switch to the working page, the checksum of the working page is calculated. The value
of the same parameter is read again – this time coming from the working page. The 2
values of the same variable can differ because they are coming from different memory
pages. Then a new value is written to this variable and the checksum is calculated again.
Now the value of the parameter on the ECU should be different to the checksum of the
same page before. Finally, a call of the Stop() method executes a transition to the
ECU port state to eOFFLINE.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ ECUCPortExample.cs
Python Python\SampleCode\ECUPort\ ECUCPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUCPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/%20ECUCPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUCPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUCPortExample.java

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

145

HIL User

:ECUCPort

:FloatValue

ECUCPort()

Start (loadingType)

NumberOfPages() : A_UINT64

getValue() : A_FLOAT64

CalculateRefPageCRC() : A_UINT64

SwitchToWorkPage()

Read () : BaseValuevariableName

Write (, value)variableName

SwitchToRefPage()

:FloatValue

Read (variableName) : BaseValue

CalculateWorkPageCRC() : A_UINT64

CalculateWorkPageCRC() : A_UINT64

FloatValue (value)

create new ECU C
port

initiate a download of the
working and reference
pages to the ECU for
initialization (transition to
eONLINE)

switch to the reference
page

get value of MaxRpm

get the number
of pages

calculate checksum
(CRC)

switch to the working
page

calculate checksum

modify MaxRpm
parameter on the working
page

calculate the checksum of
the working page again -
it should be different after
the modification of the
parameter

getValue() : A_FLOAT64
get value of MaxRpm

:FloatValue

Stop()
return to eOFFLINE

Figure 110 Handling of memory pages

ECU Access

146 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

8.3 ECUMPORT

The ECUMPort is used for measuring and capturing variables of an ECU. The measuring
can be done

 As a snapshot using the Read() method,

 By measuring of different variables in a specified raster (using Capture objects,
see chapter 4.7). Use the CreateCapture()method to create capture objects.

The getVariableNames()method returns a list of all available variable names of the
ECUMPort instance.
The getTaskNames()method returns a list of all available raster names of the
ECUMPort instance.

8.3.1 STATES OF THE ECUMPORT

Figure 111 shows the state diagram of the ECUMPort. Like the ECUCPort, the state
machine of the ECUMPort consists of two states:

eOFFLINE There is no connection to the ECU.

Capturing and reading ECU variable values are not possible.
However, it is possible to create capture instances.

eONLINE A connection to the ECU has been established.

Reading ECU variable values is possible. Capturing can be started
and stopped, without any influence on the ECU M port‟s state.

The Start() method switches from the eOFFLINE state to the eONLINE state.
The Stop() method switches from eONLINE state back to the eOFFLINE state.

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

147

stm ECUMPort stat...

eOFFLINE

eONLINE

ECUMPort::Start()

ECUMPort::Read(A_UNICODE2STRING)

Capture::Start(CaptureResultWriter)

Capture::Stop()

ECUMPort::Stop()ECUMPort::Start()

ECUMPort::CreateCapture()

ECUMPort::Stop()

ECUMPort::Read()

ECUMPort::ECUMPort()

Figure 111 States of the ECU M port

ECU Access

148 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

8.3.2 GETTING LISTS OF VARIABLE AND TASK NAMES

The first example of the ECUMPort describes how a user can get the names of all
variables and all tasks supported by this ECUMPort instance.
After the creation of the port the methods getVariableNames() and
getTaskNames() are called.

HIL User

:ECUMPort
ECUMPort()

getVariableNames() : A_UNICODE2STRING[]

getTaskNames() : A_UNICODE2STRING[]

create new ECU M
port

available measurement
variables

available measurement
tasks

Figure 112 Get lists of variable and task names

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs
Python Python\SampleCode\ECUPort\ ECUMPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java

8.3.3 READ A SCALAR VARIABLE VALUE AND ITS PROPERTIES

This example shows how to read the value of a scalar ECU variable.
The ECUMPort instance is switched to the eONLINE mode after creation. Then the
measure value is fetched using the Read() method. After switching back to the
eOFFLINE mode, the properties (e.g. name, unit, etc.) of the variable value are
examined.

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs
Python Python\SampleCode\ECUPort\ ECUMPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java
Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

149

HIL User

:ECUMPort

isReadable (variableName) : A_BOOLEAN

Read (variableName) : BaseValue

getType() : DataType

:FloatValue :Attributes

getAttributes() : Attributes

getName() : A_UNICODE2STRING

getDescription() : A_UNICODE2STRING

getValue() : A_FLOAT64

getUnit() : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

check datatype
infos

read measurement
value

Start()

Stop()

transition to
eONLINE

transition to
eOFFLINE

Figure 113 Read a scalar variable value and examine its properties

8.3.4 READ AN ARRAY VARIABLE VALUE AND ITS PROPERTIES

Reading an array value is nearly the same as reading a scalar value. The value returned
by the Read() method now is a VectorValue which can be read out index by index.

ECU Access

150 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

HIL User

:ECUMPort

isReadable (variableName) : A_BOOLEAN

Read (variableName) : BaseValue

getType() : DataType

:IntVectorValue :Attributes

getAttributes() : Attributes

getName() : A_UNICODE2STRING

getDescription() : A_UNICODE2STRING

GetValueByIndex (index) : A_INT64

getUnit() : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

check datatype
infos

read measurement
array (vector)

for each value

Start()transition to
eONLINE

Stop()transition to
eOFFLINE

Figure 114 Read an array variable value and examine its properties

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs
Python Python\SampleCode\ECUPort\ ECUMPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java

8.3.5 READ A MATRIX VARIABLE VALUE AND ITS PROPERTIES

Reading a matrix value is nearly the same as reading an array value. The value returned
by the Read() method now is a MatrixValue which can be read out using row and
column indices.

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

151

HIL User

:ECUMPort

isReadable (variableName) : A_BOOLEAN

Read (variableName) : BaseValue

getType() : DataType

:Float
MatrixValue :Attributes

getAttributes() : Attributes

getName() : A_UNICODE2STRING

getDescription() : A_UNICODE2STRING

GetValueByIndex (columnIndex) : A_FLOAT64

getUnit() : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

GetProperty (name) : A_UNICODE2STRING

check datatype
infos

read measurement
array (matrix)

for each value

Start()

Stop()

transition to
eONLINE

transition to
eOFFLINE

Figure 115 Read a matrix variable value and examine its properties

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs
Python Python\SampleCode\ECUPort\ ECUMPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java

ECU Access

152 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

8.3.6 CAPTURING ECU VARIABLES

For reading more than one variable value, including its timestamps, a capture object must
be used. The following example illustrates this.

A capture object always does the data acquisition using a specified raster. This raster is
defined at creation time of the capture object using the CreateCapture() method.
The subsequent call to setVariables() function defines which ECU variables shall
be captured by this capture instance.

Capturing can only be done in the eONLINE state, which is initiated by a call of the
Start() method. Now the capturing can be started and stopped by the
Capture.Start() and Capture.Stop() methods. When capturing has been
finished, the ECUMPort instance can be switched back to the eOFFLINE state. A call to
the Capture.getCaptureResult() function returns all captured variable values.

See chapter 4.9 for more information about the Capture and CaptureResult
classes.

HIL User

:ECUMPort

:Capture

ECUMPort()

getVariableNames() : A_UNICODE2STRING[]

create new ECUPort

get all available variables
and all available tasks

create capture with a
specific task

set the list of variables to
measure to the capture

getTaskNames() : A_UNICODE2STRING[]

CreateCapture (task) : Capture

:CaptureResult
MemoryWriter

setVariables(variableNames)

Start()

Start(writer)

Stop()

Stop()

getCaptureResult() : CaptureResult

create a writer to store
the results

transition to eONLINE

start capturing

stop capturing

transition to eOFFLINE

get the results of the
capturing

Figure 116 Capturing ECU variables

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

153

The sample code for this example will be found at

C# C#\ASAM.HILAPI\SampleCode\ECUPort\ECUMPortExample.cs
Python Python\SampleCode\ECUPort\ ECUMPortExample.py
Java JAVA\SampleCode\ECUPort\ ECUMPortExample.java

Technology_Reference_Interfaces/C%23/ASAM.HILAPI/SampleCode/ECUPort/ECUMPortExample.cs
Technology_Reference_Interfaces/Python/SampleCode/ECUPort/ECUMPortExample.py
Technology_Reference_Interfaces/JAVA/SampleCode/ECUPort/ECUMPortExample.java

ECU Access

154 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Directory of Figures

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

155

Directory of Figures

Figure 1 Principle of Hardware-in-the-Loop Simulation 9
Figure 2 HIL Testbench Architecture 10
Figure 3 Standardization Potential around Hardware-in-the-Loop Simulation 12
Figure 4 Today‟s Situation in HIL Testsystems 13
Figure 5 Solution Approach First Step: Standardisation of HIL API 14
Figure 6 Technological Approach via a generic HIL API Model 15
Figure 7 Getting Access to HIL API 19
Figure 8 Ports in HIL 20
Figure 9 Packages in Common part 21
Figure 10 ASAM data types 24
Figure 11 Collection classes 25
Figure 12 Collection example: SegmentSignalDescription 26
Figure 13 Typed Collections 27
Figure 14 General Value classes 29
Figure 15 Data types of value elements managed by Value classes ScalarValue

and VectorValue 30
Figure 16 Application oriented Value classes 31
Figure 17 Attributes class 31
Figure 18 Exceptions 33
Figure 19 Package structure 34
Figure 20 DocumentHandling in HIL 35
Figure 21 SignalDescriptions and SignalGenerator 36
Figure 22 Modulate Signal Parameter by further Signals 37
Figure 23 SignalDescriptions and SignalGenerator 37
Figure 24 SignalDescriptions and SignalGenerator (data transformation) 38
Figure 25 SignalDescription relations 39
Figure 26 SignalDescription Reader and Writer 39
Figure 27 Symbol 40
Figure 28 ConstSegment 42
Figure 29 RampSegment 44
Figure 30 IdleSegment 46
Figure 31 NoiseSegment 48
Figure 32 RampSlopeSegment 49
Figure 33 SineSegment 51
Figure 34 SawSegment 53
Figure 35 PulseSegment 55
Figure 36 ExpSegment 57
Figure 37 SignalValueSegment 59
Figure 38 OperationSegment 61
Figure 39 Signal creation: Const-, Ramp- RampSlope- and SineSegment (part 1) 64
Figure 40 Signal creation: Saw-, Pulse-, Exp- and IdleSegment (part 2) 65
Figure 41 Signal creation: Operation- and SignalValueSegment (part 3) 66
Figure 42 Create an OperationSignal (part 1) 67
Figure 43 Create an OperationSignal (part 2) 68
Figure 44 Create a wobbling signal 69
Figure 45 Create and query a SignalDescriptionSet 70
Figure 46 Load a SignalDescriptionSet 71
Figure 47 Save signal description set 71
Figure 48 Watcher 72
Figure 49 The class Capture 74

Directory of Figures

156 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Figure 50 Start and Stop Trigger used 75
Figure 51 Capture results 76
Figure 52 Bookmark handling 77
Figure 53 Bookmark Association 78
Figure 54 Bookmarks and Capture Results 79
Figure 55 Document Handling 80
Figure 56 Capturing state diagram 81
Figure 57 Usage of capturing with Watcher (part 1) 83
Figure 58 Usage of capturing with Watcher (part 2) 84
Figure 59 Usage of capturing with Watcher (part 3) 85
Figure 60 Model Access Port 86
Figure 61 SignalGenerator 87
Figure 62 Document Handling 88
Figure 63 Signal generator state diagram 89
Figure 64 Model AccessPort example 92
Figure 65 SignalGenerator example (part 1) 93
Figure 66 SignalGenerator example (part 2) 94
Figure 67 Component Interaction 96
Figure 68 ECU classes 98
Figure 69 Class hierarchy of the macro classes 99
Figure 70 Functional group classes 100
Figure 71 Getting the ECU object 101
Figure 72 Reading and clearing the fault memory 102
Figure 73 Reading the variant coding data 103
Figure 74 Reading identification data 104
Figure 75 Reading measurement data 105
Figure 76 Executing macros 106
Figure 77 Reading and writing values from and to the EEPROM by an alias name 108
Figure 78 Reading from the EEPROM 109
Figure 79 Writing to the EEPROM 109
Figure 80 Sending HEX service with explicit communication 110
Figure 81 Executing a job 111
Figure 82 Reading measurement data from a functional group 112
Figure 83 Using the BaseController 113
Figure 84 Electrical Error Simulation is used to disturb the signals between the HIL

system and the SUT 115
Figure 85 Error configurations are defined by EES ports and downloaded for

execution to the vendor-specific EES hardware respective software 116
Figure 86 An error configuration comprises a sequence of error sets with several

errors 117
Figure 87 Example for the execution of an error configuration 118
Figure 88 Illustration of the error categories defined by EES port 120
Figure 89 Illustration of the error types defined by EES port 121
Figure 90 Illustration of the option with load and without load 122
Figure 91 The main EES port classes 123
Figure 92 Classes used to represent an error configuration 124
Figure 93 Class hierarchy of error objects 125
Figure 94 Classes used to create error objects 126
Figure 95 Reader and writer classes for error configuration files 127
Figure 96 State diagram for EES port 128
Figure 97 Sequence of example “create error configuration by API” (part1) 129
Figure 98 Sequence of example “create error configuration by API” (part2) 130
Figure 99 Sequence to create a short-circuit to Ubattery error object 131
Figure 100 Sequence to create a loose contact error object 132

ECU Access

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

157

Figure 101 Sequence to create a short-circuit error object 133
Figure 102 Sequence to create a line interruption error object 133
Figure 103 Sequence to create a pin-to-pin error object 134
Figure 104 Sequence of example “load error configuration from file” 135
Figure 105 Accessing ECUs via the HIL API 137
Figure 106 The ECU port classes 138
Figure 107 States of the ECU C port 140
Figure 108 Read and write a scalar float ECU parameter 142
Figure 109 Get the list of parameters of an ECUCPort instance 143
Figure 110 Handling of memory pages 145
Figure 111 States of the ECU M port 147
Figure 112 Get lists of variable and task names 148
Figure 113 Read a scalar variable value and examine its properties 149
Figure 114 Read an array variable value and examine its properties 150
Figure 115 Read a matrix variable value and examine its properties 151
Figure 116 Capturing ECU variables 152

Directory of Figures

158 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Directory of Tables

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

159

Directory of Tables

Table 1 Ports 20
Table 2 Packages of Common part 22
Table 3 Version number 23
Table 4 ErrorCode PreFixes and ErrorValue Range 34

Directory of Tables

160 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

Books

ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

161

Books

[ASAM Expression] ASAM AE Expression "General Expression Syntax",
Version 1.0.0 (Draft of 23.07.2009)

[ASAM Data Types] ASAM AIS "Abstract data type definition", Version 2.0.0

[ASAM MCD-2 MC] ASAM MCD-2 MC "Measurement and Calibration Data
Specification", Version 1.6.0

[ASAM MDF] ASAM COMMON MDF "Measurement Data Format,
Programmers Guide", Version 4.0.0

[ASAM MCD-2 NET] ASAM MCD-2 NET "FIBEX - Field Bus Exchange Format",
Version 3.0.0

 [ASAM MCD-3] ASAM MCD-3 "Application Programming Interface

Specification", Version 2.2.0

[HIL C# Reference] ASAM AE HIL "C# API Technology Reference",
Version 1.0.0

[HIL Java Reference] ASAM AE HIL "Java API Technology Reference",
Version 1.0.0

[HIL Python Reference] ASAM AE HIL "Python API Technology Reference",
Version 1.0.0

162 ASAM AE HIL Application Programming Interface for ECU Testing via
Hardware-in-the-Loop Simulation Version 1.0.0

ASAM e.V.

Arnikastrasse 2

D-85635 Höhenkirchen

Germany

Tel.: (+49) 08102 / 8953 17

Fax.: (+49) 08102 / 8953 10

E-mail: info@asam.net

Internet: www.asam.net

mailto:Info@asam.net

