
1

General Nios ii IP Implementation

Table of Contents
Introduction .. 1

Purpose/Use .. 2

Initialization and Setup .. 3

Installing Eclipse IDE Environment .. 3

Setting up Firmware .. 4

Creating Nios II Eclipse Project.. 5

Running Software on Nios with JTAG .. 8

.elf Running as Hardware .. 9

Using the Nios and Examples ... 12

Reading From and Writing to FPGAWB IPs ... 12

Setting up Hardware Interrupt IRQ from User Module IO.. 14

Setting up Firmware ... 14

Setting up Software ... 14

Setting Up JTAG USB Blaster (Linux) .. 12

Misc. Problems/Errors ... 18

Makefile error ... 18

2

Introduction

▪ Purpose/Use

 The General Nios ii IP gives the user ability to code C code to a Nios ii softcore processor

synthesized onto the FPGA.

This document will go through the process of setting up the Nios II Eclipse IDE Environment to

run, debug, and create code to communicate with the rest of the FPGA.

3

Initialization and Setup

▪ Installing Eclipse IDE Environment

 It is possible the Eclipse IDE environment is already installed in the Quartus directory. To

check if it is installed or not, click the link below and follow step 5.

https://www.terasic.com.tw/wiki/Getting_Start_Install_Eclipse_IDE_into_Nios_EDS#:~:text=Th

e%20procedure%20for%20installing%20Eclipse%20IDE%3A%201%20Download,%3C%20Intel%

C2%AE%20Quartus%C2%AE%20Prime%20installation%20directory%3E%2Fnios2eds%2Fbin%2F

eclipse_nios2.%20More%20items

If the folder or file is not there, then follow steps 1-3 to install the Eclipse IDE Environment.

Confirm again that is installed correctly with step 5.

Now the Nios II Eclipse IDE Environment should be installed and ready to use.

https://www.terasic.com.tw/wiki/Getting_Start_Install_Eclipse_IDE_into_Nios_EDS#:~:text=The%20procedure%20for%20installing%20Eclipse%20IDE%3A%201%20Download,%3C%20Intel%C2%AE%20Quartus%C2%AE%20Prime%20installation%20directory%3E%2Fnios2eds%2Fbin%2Feclipse_nios2.%20More%20items
https://www.terasic.com.tw/wiki/Getting_Start_Install_Eclipse_IDE_into_Nios_EDS#:~:text=The%20procedure%20for%20installing%20Eclipse%20IDE%3A%201%20Download,%3C%20Intel%C2%AE%20Quartus%C2%AE%20Prime%20installation%20directory%3E%2Fnios2eds%2Fbin%2Feclipse_nios2.%20More%20items
https://www.terasic.com.tw/wiki/Getting_Start_Install_Eclipse_IDE_into_Nios_EDS#:~:text=The%20procedure%20for%20installing%20Eclipse%20IDE%3A%201%20Download,%3C%20Intel%C2%AE%20Quartus%C2%AE%20Prime%20installation%20directory%3E%2Fnios2eds%2Fbin%2Feclipse_nios2.%20More%20items
https://www.terasic.com.tw/wiki/Getting_Start_Install_Eclipse_IDE_into_Nios_EDS#:~:text=The%20procedure%20for%20installing%20Eclipse%20IDE%3A%201%20Download,%3C%20Intel%C2%AE%20Quartus%C2%AE%20Prime%20installation%20directory%3E%2Fnios2eds%2Fbin%2Feclipse_nios2.%20More%20items

4

▪ Setting up Firmware

Generall, if there is a device the Nios is to communicate to, the Data Master Avalon

Memory Mapped Master bus line from the Nios has to connect to that device. This can be done

by opening the “mioc_g1_4x.qsys” file inside of Quartus Platform Designer.

The photo below shows an example of the Nios Data Master bus being connected to the

FPGAWB IP Register Write. In this case there is only one IP the Nios is communicating to, if

there are more in your project, the Nios Data Master must be individually connected to each of

the IPs.

Once this task has been completed, save the file. If prompted if you would like to generate,

select no.

Now the Quartus project is ready for a full compile.

5

▪ Creating Nios II Eclipse Project

After adding data bus connections and a full Quartus compile the Nios II Eclipse Project can now

be created.

1. In the Quartus Project window select tools at the top of the window and select Nios II Software

Build Tools for Eclipse.

a.
2. Select a directory to create the Eclipse project (location doesn’t matter)

a.

6

3. The Nios II Eclipse window should now open select file to create a project from a template.

a.
4. After this you will have to select the “mioc_g1_4x.sopcinfo” file and the corresponding Nios

you will be programming to. Give the Nios Project a name. Select “Hello World” as the

template NOT “Hello World Small”

7

a.
i. Once completing the above, click finish and the project will be created.

8

Running Software on Nios
The project generated should have a simple file called hello_world.c that uses the printf()

function to print to the console.

1. Step one will be to run this file to make sure everything is working before moving

forward and implementing any more code.

2. Whenever the project is opened for the first time or changes have been made to the

source code and saved, the project needs to be built.

a. Build the project to check if there are any errors in the code (which there

shouldn’t be at this point since the template hello_world.c file is the only thing

being built).

i. Refer to Makefile error section under Misc. Problems/Errors if there is a

build error.

b. Whenever the project is built a .elf file is created in the project directory. The .elf

file is what is flashed to the On-Chip memory to run the Nios II C code.

9

▪ .elf Running as Hardware

Whenever wanting to run C code on the Nios II processor synthesized to the FPGA the following

will have to be done.

The .elf file is flash directly to the FPGA with a JTAG UART connection.

Make sure to follow the “Setting up JTAG USB Blaster” section before moving on.

1. First Right click the .elf file and Run as hardware

a.
2. Upon initial run as hardware the user will have to select the hardware the .elf will be

running off of and the following window will pop up.

10

a.
i. Make sure to check both boxes under “System ID checks” after doing so

click “Apply” then the “Refresh Connections” button.

3. After Refreshing the connections, the following should happen:

a.
i. This means that the Nios II soft-core processor has been detected, select

it and click run.

4. If No connection is detected, try the following:

a. Go to the directory:

< Intel® Quartus® Prime installation directory>/quartus/bin>

b. Once in the directory run the following commands in terminal:

11

c.
d. If the command has worked correctly something similar should pop up in

terminal after the ./jtagconfig command.

e. Sometimes it can be necessary to run the “killall jtagd” multiple times.

5. Once this has been done refresh connections and select the Nios II processor to run the

file.

6. Assuming the connection was found and the hello_world.c file has not changed, “Hello

from Nios ii” should print to the Eclipse console.

7. This means that everything is working and new code can be added to the project file.

Anytime code is added, the files must be saved, built, then the .elf file must be re-flashed.

It is worth noting that even when the .elf file run as hardware is stopped the code will continue

to run UNLESS there are any stdio library functions used in the code. Stdio library uses the JTAG

connection and if the connection is broken the code will also break if, and only if, it is using the

stdio library (such as printf()).

12

 Using The Nios and Examples
From this point, coding in C works like any other case of Embedded C coding and the

same can be done. The point of this part of the documentation is to highlight what use cases it

has in terms of interacting with other FPGAWB IPs.

▪ Reading From and Writing to FPGAWB IPs

The following steps can only be done after the Data Master bus has been connected to the

corresponding FPGAWB IP inside of Platform Designer.

Reading and writing to address locations requires the source code to “#include “io.h”

IORD() returns the value at an address location.

IOWR() is used to write to an address location.

The photo below shows an example of reading the value from the FPGAWB IP Register WR and

then inverting the value with an exclusive or operation, then writes the value back to the same

address location.

The logic of the code above simply toggles the value inside at the address location

“FPGAWB_REGISTER_WRITE_0_BASE”.

13

The variable “FPGAWB_REGISTER_WRITE” is defined in the file system.h which is under the

_bsp project folder and needs to be included when writing to any address location.

This is an important take away as it allows the user to not have to worry about what address

location they are writing to but instead use the variables defined in system.h.

14

▪ Setting up Hardware Interrupt IRQ from User Module IO

The FPGAWB IP User Module IO can send IRQs which can be received by the Nios II as a

hardware interrupt.

• Setting up Firmware

The User Module IO does not come with pre-built logic for a hardware interrupt, so any

interrupt to be sent by this IP is expected to be rooted in custom logic. For the use-case of

sending an IRQ to a Nios II processor, the pulse width for the interrupt to be set at as active

high is recommended by the Nios documentation to be at minimum 50 clock cycles (Measured

by the clock of the Nios, not the User Module IP_clk). This should be handled in the custom

logic.

For the User Module to be able to send an IRQ, the Interrupt Sender instantiated in the IP’s

.qsys file must be utilized. The photo below shows how the user_qsys IP will look by default in

the platform designer.

The highlighted signal “user_irq” is a custom signal conduit created for this IP that is internally

connected to the “irq_so” Interrupt Sender. Any logic driven to this conduit will control the

output of irq_so.

The following steps will allow for this user_irq signal to driven by custom logic:

15

1. Export the user_irq signal in Platform Designer by double clicking the words “Double-

click to export” next to the signal.

After it has been exported the signal should appear as so:

 Do not change the exported name from “fpgawb_user_qsys_0_user_irq”.

2. Connect the signal down multiple levels to meet the custom logic.

a. Add this line of Verilog code to the firmware_qsys_interface.v file that is

generated in the working project directory of the FPGAWB project.

16

b. Add these two lines of Verilog code to the firmware_io_declaration.v file that is

generated in the working project directory of the FPGAWB project.

17

 In the image above the name of the signal in the fpgawb_user_module_io_top port list

is shown to be ‘irq’. This was an arbitrary name for this example. The signal is simply a single bit

from custom logic, and so in this image and the following two images ‘irq’ may be replaced with

some other signal name.

c. Create a custom logic signal that ties through the

fpgawb_user_module_io_top.v and fpgawb_user_module_io.v files found in the

fpgawb_user_module_io directory that is auto-generated in the project.

18

3. Connect the Interrupt Sender to the desired Interrupt Receiver.

19

Make sure to set the interrupt priority to the desired level based on the receiver’s application.

• Setting up Software

The job of the software is to be able to handle whenever there is a hardware interrupt and have

an ISR to enter. The first step is to change some variable definitions inside of the system.h file.

1. Change system.h file

a. Go to the system.h file and find the definition of FPGAWB_USER_QSYS_0_IRQ

b. By default FPGAWB_USER_QSYS_0_IRQ is defined as -1, it should reflect the

priority value that was given to it inside of Platform Designer when the Interrupt

sender was connected to the Nios.

c. Along with this, FPGAWB_USER_QSYS_0_IRQ_INTERRUPT_CONTROLLER_ID

should be changed to 0.

d. NOTE: Anytime the BSP is generated parts a-c must be done.

e. The photo below shows how it should look.

f.
g. Lines 209 and 210 are the lines that need to be edited. The value ‘2’ on line 209

of the example photo is dependent on the value set to the interrupt sender

priority in Platform Designer.

20

2. Register the ISR with HAL

a.
b. The photo above shows all the code necessary to enable the hardware interrupt.

At this point the C code and software should have everything necessary to catch the hardware

interrupt and enter the ISR when triggered.

21

Setting Up JTAG USB Blaster
 This step is necessary to use JTAG USB Blaster to flash .elf files to the Nios.

1. Create a file called “51-usbblaster.rules” in the directory

 “/etc/udev/rules.d/51-usbblaster.rules”

a. If the folder rules.d doesn’t exist, create it in the udev directory.

2. Add the following line of code to 51-usbblaster.rules

a. ATTR{idVendor}=="09fb", ATTR{idProduct}=="6001", MODE="0666"

3. The parameters types in here depend on the type of USB Blaster being used. Type the

following terminal command to determine these values:

a. lsusb | grep Altera

b. In this case Altera is the company brand used for the USB Blaster, which is why

Altera is used in the grep command, if a different company created the USB

Blaster in question type that name instead.

c. The command should print to console the values needed for the .rules file.

4. Now the setup should be finished, after this there are a set of commands useful when

using JTAG and can all be found in the < Intel® Quartus® Prime installation

directory>/quartus/bin> directory.

5. The following procedure can be useful when wanting to do a sort of “Reset” to the JTAG

connection.

a.
6. If ./jtagconfig command still doesn’t print out something similar to what is in the image

above, try the following.

a. Sudo killall -9 jtagd (multiple times until)

The Reset process of the JTAG may be necessary every time wanting to use JTAG on initial

startup.

The ./jtagconfig command is the best way to determine if the connection to the FPGA is made

correctly.

22

Misc. Problems/Errors

▪ Makefile Error

 If you build your project and get an error similar to the following error:

This occurs because the firmware has changed or it is an initial startup the solution is simple:

1. Right click the C project folder in the left panel of Nios II Eclipse

2. Scroll to the bottom of the options and hover over “Nios II”

3. Select “Generate BSP”

4. Now build the project and the error should be gone.

